Advertisement

Formation and dissolution of salt crusts as a rapid way of nitrate mobilization in a tile-drained agricultural field under a temperate climate

  • Nicolò Colombani
  • Dario Di Giuseppe
  • Barbara Faccini
  • Micòl MastrociccoEmail author
  • Massimo Coltorti
Original Paper
Part of the following topical collections:
  1. Water Resources in Arid Areas

Abstract

Agriculture is widely recognized as one of the human activities that have a major impact on the pollution of water resources. In agricultural fields, the formation of salt crusts during dry periods and their fast dissolution due to irrigation or rainfall events can induce the leaching of water with an elevated content of dissolved species towards surface and ground waters. This process is rather common in arid environments but it also occurs in coastal plains in temperate environments. The formation of salt crusts was studied in a 6.3-ha experimental site located in the Po River Delta (Northern Italy). The soil, consisting of interfluvial silty-clay deposits recently reclaimed and equipped with tile drains to avoid water-logging conditions, was investigated for vertical spatial heterogeneity via depth profiles and for horizontal spatial heterogeneity collecting numerous surface soil samples. Extreme drought conditions were recorded over the monitoring period (summer–autumn 2012), leading to soil fracturing and then to fast water percolation during the first rainfall events in autumn. Major ion concentration, measured in pore-water, showed nitrate peaks of several grams per litre, suggesting the dissolution of nitrate salts. Results from this study highlighted the following: (i) that the fertilizers applied to the filed site were evapoconcentrated in the top soil; (ii) a marked spatial heterogeneity in the salt crust formation, which was unevenly distributed over the field with a preferential appearance in the hollows; and (iii) a rapid mobilization of nitrate towards tile drains after the first rainfall events, due to preferential flow through soil cracks developed during the summer season.

Keywords

Nitrate Evapoconcentration Percolation Tile drains Temperate climate 

Notes

Acknowledgments

Dr. Umberto Tessari and Mr. Francesco Droghetti from the Physics and Earth Sciences Dept. of the University of Ferrara are gratefully thanked for their help. This work has been supported by EC LIFE+ funding to ZeoLIFE project (LIFE+10 ENV/IT/000321).

References

  1. Amorosi A, Centineo MC, Dinelli E, Lucchini F, Tateo F (2002) Geochemical and mineralogical variations as indicators of provenance changes in Late Quaternary deposits of SE Po Plain. Sediment Geol 151:273–292. doi: 10.1016/S0037-0738(01)00261-5 CrossRefGoogle Scholar
  2. Bai J, Xiao R, Cui B, Zhang K, Wang Q, Liu X, Gao H, Huang L (2011) Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Environ Pollut 159:817–824. doi: 10.1016/j.envpol.2010.11.004 CrossRefGoogle Scholar
  3. Balestrini R, Arese C, Delconte CA, Lotti A, Salerno F (2011) Nitrogen removal in subsurface water by narrow buffer strips in the intensive farming landscape of the Po River watershed, Italy. Ecol Eng 37:148–157. doi: 10.1016/j.ecoleng.2010.08.003 CrossRefGoogle Scholar
  4. Balestrini R, Sacchi E, Tidili D, Delconte CA, Buffagni A (2016) Factors affecting agricultural nitrogen removal in riparian strips: examples from groundwater-dependent ecosystems of the Po Valley (Northern Italy). Agric Ecosyst Environ 221:132–144. doi: 10.1016/j.agee.2016.01.034 CrossRefGoogle Scholar
  5. Billen G, Garnier J (2000) Nitrogen transfers through the Seine drainage network: a budget based on the application of the ‘Riverstrahler’ model. Hydrobiol 410:139–150. doi: 10.1023/A:1003838116725 CrossRefGoogle Scholar
  6. Brambati A, Candian C, Bisiacchi G (1973) Fortran IV program for settling tube size analysis using CDC 6200 computer. Istituto di Geologia e Paleontologia, Università di TriesteGoogle Scholar
  7. Burt TP, Pinay G (2005) Linking hydrology and biogeochemistry in complex landscapes. Progress Physic Geogr 29:297–316. doi: 10.1191/0309133305pp450ra CrossRefGoogle Scholar
  8. Christen EW, Ayars JE, Hornbuckle JW (2001) Subsurface drainage design and management in irrigated areas of Australia. Irrig Sci 21(1):35–43. doi: 10.1007/s002710100048 CrossRefGoogle Scholar
  9. Colombani N, Mastrocicco M, Di Giuseppe D, Faccini B, Coltorti M (2014) Variation of the hydraulic properties and solute transport mechanisms in a silty-clay soil amended with natural zeolites. Catena 123:195–204. doi: 10.1016/j.catena.2014.08.003 CrossRefGoogle Scholar
  10. European Commission (1998). Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Official Journal L 330, 05/12/1998, pp. 0032–0054.Google Scholar
  11. Danielson RE, Sutherland PL (1986) Methods of soil analysis, part I. Physical and mineralogical methods. 2nd Ed., American Society of Agronomy, Madison.Google Scholar
  12. Dayyani S, Madramootoo CA, Prasher SO, Madani A, Enright P (2010) Modeling water table depth, drain outflow, and nitrogen losses in a cold climate using DRAINMOD 5.1. Trans ASABE 53(2):385–395CrossRefGoogle Scholar
  13. Di Giuseppe D, Faccini B, Mastrocicco M, Colombani N, Coltorti M (2014) Reclamation influence and background geochemistry of neutral saline soils in the Po River Delta plain (Northern Italy). Environ Earth Sci 72:2457–2473. doi: 10.1007/s12665-014-3154-4 CrossRefGoogle Scholar
  14. Di Giuseppe D, Melchiorre M, Tessari U, Faccini B (2016) Relationship between particle density and soil bulk chemical composition. J Soils Sediments 16:909–915. doi: 10.1007/s11368-015-1275-3 CrossRefGoogle Scholar
  15. Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL, Colvin TS, Cambardella CA (2002) Nitrogen management strategies to reduce nitrate leaching in tile-drained midwestern soils. Agron J 94(1):153–171. doi: 10.2134/agronj2002.1530 CrossRefGoogle Scholar
  16. Dreimanis A (1962) Quantitative gasometric determination of calcite and dolomite by using Chittick apparatus. J Sediment Res 32:520–529Google Scholar
  17. Elrick DE, Reynolds WD (1992) Methods of analyzing constant-head well permeameter data. Soil Sci Soc Am J 56:320–323. doi: 10.2136/sssaj1992.03615995005600010052x CrossRefGoogle Scholar
  18. Fabian L (2012) Extreme cities and isotropic territories: scenarios and projects arising from the environmental emergency of the central Veneto città diffusa. Int J Disaster Risk Sci 3(1):11–22. doi: 10.1007/s13753-012-0003-5 CrossRefGoogle Scholar
  19. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Sci 320(5878):889–892. doi: 10.1126/science.1136674 CrossRefGoogle Scholar
  20. Gardner WH (1986) Water content. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods. ASA and SSSA, Madison, WI, pp. 493–544. doi: 10.2136/sssabookser5.1.2ed.c21 Google Scholar
  21. Gibbs RJ (1970) Mechanism controlling world water chemistry. Sci 170:1088–1090CrossRefGoogle Scholar
  22. Hamdi-Aissa B, Valles V, Aventurier A, Ribolzi O (2004) Soils and brine geochemistry and mineralogy of hyperarid desert playa, Ouargla Basin, Algerian Sahara. Arid Land Res Manage 18(2):103–126. doi: 10.1080/1532480490279656 CrossRefGoogle Scholar
  23. Hefting MM, Clement JC, Bienkowski P, Dowrick D, Guenat C, Butturini A, Topa S, Pinay G, Verhoevenet JTA (2005) The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Ecol Eng 24:465–482. doi: 10.1016/j.ecoleng.2005.01.003 CrossRefGoogle Scholar
  24. Howarth RW, Swaney D, Billen G, Garnier J, Hong B, Humborg C, Johnes P, Mörth C, Marino R (2012) Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Front Ecol Environ 10:37–43. doi: 10.1890/100178 CrossRefGoogle Scholar
  25. Ibrahimi MK, Miyazaki T, Nishimura T, Imoto H (2013) Contribution of shallow groundwater rapid fluctuation to soil salinization under arid and semiarid climate. Arab J Geosci doi. doi: 10.1007/s12517-013-1084-1 Google Scholar
  26. Lassaletta L, Garcıa-Gomez H, Gimeno BS, Rovira JV (2009) Agriculture-induced increase in nitrate concentrations in stream waters of a large Mediterranean catchment over 25 years (1981–2005). Sci Total Environ 407:6034–6043. doi: 10.1016/j.scitotenv.2009.08.002 CrossRefGoogle Scholar
  27. Lima LA, Grismer ME (1994) Application of fracture mechanics to cracking of saline soils. Soil Sci 158(2):86–96CrossRefGoogle Scholar
  28. Mace JE, Amrhein C (2001) Leaching and reclamation of a soil irrigated with moderate SAR waters. Soil Sci Soc Am J 65(1):199–204. doi: 10.2136/sssaj2001.651199x CrossRefGoogle Scholar
  29. Mastrocicco M, Colombani N, Di Giuseppe D, Faccini B, Coltorti M (2013a) Contribution of the subsurface drainage system in changing the nitrogen speciation of an agricultural soil located in a complex marsh environment (Ferrara, Italy). Agr Water Manage 119:144–153. doi: 10.1016/j.agwat.2012.12.018 CrossRefGoogle Scholar
  30. Mastrocicco M, Colombani N, Di Giuseppe D, Faccini B, Ferretti G, Coltorti M (2015) Abnormal trace element concentrations in a shallow aquifer belonging to saline reclaimed environments, Codigoro (Italy) Rendiconti Lincei 1-10. doi: 10.1007/s12210-015-0454-x.Google Scholar
  31. Mastrocicco M, Giambastiani BMS, Colombani N (2013b) Ammonium occurrence in a salinized lowland coastal aquifer (Ferrara, Italy). Hydrol Proc 27(24):3495–3501. doi: 10.1002/hyp.9467 CrossRefGoogle Scholar
  32. Molinari A, Guadagnini L, Marcaccio M, Straface S, Sanchez-Vila X, Guadagnini A (2013) Arsenic release from deep natural solid matrices under experimental controlled redox conditions. Sci Total Environ 444:231–240. doi: 10.1016/j.scitotenv.2012.11.093 CrossRefGoogle Scholar
  33. Mortl A, Muñoz-Carpena R, Kaplan D, Li Y (2011) Calibration of a combined dielectric probe for soil moisture and porewater salinity measurement in organic and mineral coastal wetland soils. Geoderma 161:50–62. doi: 10.1016/j.geoderma.2010.12.007 CrossRefGoogle Scholar
  34. Niazi MFK, Ghumman AR, Wolters W (2008) Evaluation of impact of Khushab sub surface pipe drainage project in Pakistan. Irrig Drain Syst 22(1):35–45. doi: 10.1007/s10795-007-9030-6 CrossRefGoogle Scholar
  35. Ramesh Kumar A, Riyazuddin P (2012) Seasonal variation of redox species and redox potentials in shallow groundwater: a comparison of measured and calculated redox potentials. J Hydrol 444–445:187–198. doi: 10.1016/j.jhydrol.2012.04.018 CrossRefGoogle Scholar
  36. Rasmussen KJ (1999) Impact of ploughless soil tillage on yield and soil quality: a Scandinavian review. Soil Till Res 53:3–14. doi: 10.1016/S0167-1987(99)00072-0 CrossRefGoogle Scholar
  37. Romero E, Garnier J, Lassaletta L, Billen G, Le Gendre R, Riou P, Cugier P (2012) Large-scale patterns of river inputs in Southwestern Europe: seasonal and interannual variations and potential eutrophication effects at the coastal zone. Biogeochem 113(1):481–505. doi: 10.1007/s10533-012-9778-0 Google Scholar
  38. Rozemeijer JC, van der Velde Y, van Geer FC, Bierkens MFP, Broers HP (2010) Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: from field-scale concentration patterns in groundwater to catchment-scale surface water quality. Environ Pollut 158(12):3571–3579. doi: 10.1016/j.envpol.2010.08.014 CrossRefGoogle Scholar
  39. Schaap MG, Leij FJ, van Genuchten MT (2001) Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251:163–176. doi: 10.1016/S0022-1694(01)00466-8 CrossRefGoogle Scholar
  40. Sharma DP, Gupta SK (2006) Subsurface drainage for reversing degradation of waterlogged saline lands. Land Degrad Develop 17:605–614. doi: 10.1002/ldr.737 CrossRefGoogle Scholar
  41. Singh R, Helmers MJ, Zhiming Q (2006) Calibration and validation of DRAINMOD to design subsurface drainage systems for Iowa’s tile landscapes. Agric Water Manag 85:221–232. doi: 10.1016/j.agwat.2006.05.013 CrossRefGoogle Scholar
  42. Smith M, Compton JS (2004) Origin and evolution of major salts in the Darling pans, Western Cape, South Africa. Appl Geochem 19:645–664. doi: 10.1016/j.apgeochem.2003.10.003 CrossRefGoogle Scholar
  43. Tiessen H, Moir JO (1993) Total and organic carbon. In: Carte ME (ed) Soil sampling and methods of analysis. Lewis Publishers, New York, pp. 187–211Google Scholar
  44. U.S. Department of Agriculture (1984), Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054242 accessed 04/13/2016).
  45. Van den Berg CA, Loch JPG (2000) Decalcification of soils subject to periodic waterlogging. Eur J Soil Sci 51:27–33. doi: 10.1046/j.1365-2389.2000.00279.x CrossRefGoogle Scholar
  46. Vogel H-J, Hoffmann H, Leopold A, Roth K (2005) Studies of crack dynamics in clay soil: II. A physically based model for crack formation. Geoderma 125(3–4):213–223. doi: 10.1016/j.geoderma.2004.07.008 CrossRefGoogle Scholar
  47. Vogeler I, Clothier BE, Green SR, Scotter DR, Tillman RW (1996) Characterizing water and solute movement by TDR and disk permeametry. Soil Sci Soc Am J 60:5–12. doi: 10.2136/sssaj1996.03615995006000010004x CrossRefGoogle Scholar
  48. Washington JW, Thomas RC, Endale DM, Schroer KL, Samarkina LP (2006) Groundwater N speciation and redox control of organic N mineralization by O2 reduction to H2O2. Geochim Cosmochim Acta 70:3533–3548. doi: 10.1016/j.gca.2006.04.006 CrossRefGoogle Scholar
  49. Weisbrod N, Nativ R, Adar EM, Ronen D (2000) Salt accumulation and flushing in unsaturated fractures in an arid environment. Ground Water 3(3):452–461. doi: 10.1111/j.1745-6584.2000.tb00232.x CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2016

Authors and Affiliations

  • Nicolò Colombani
    • 1
  • Dario Di Giuseppe
    • 2
  • Barbara Faccini
    • 2
  • Micòl Mastrocicco
    • 3
    Email author
  • Massimo Coltorti
    • 2
  1. 1.Department of Earth SciencesUniversity of Rome “La Sapienza”RomeItaly
  2. 2.Department of Physics and Earth SciencesUniversity of FerraraFerraraItaly
  3. 3.Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesSecond University of NaplesCasertaItaly

Personalised recommendations