Dust storms, volcanic ash hurricanes, and turbidity currents: physical similarities and differences with emphasis on flow temperature

  • Domenico M. DoronzoEmail author
  • Joan Martí
  • Pierfrancesco Dellino
  • Guido Giordano
  • Roberto Sulpizio
Original Paper
Part of the following topical collections:
  1. DUST


We analyze similarities and differences between three natural phenomena of common occurrence on Earth, which are studied in environmental geosciences: dust storms, volcanic ash hurricanes, and turbidity currents. The discussion combines field and experimental observations and physical concepts with the aim of proposing general guidelines for multiphase flow modeling in geosciences. All of these phenomena are fascinating, but their potentially dangerous interaction with the environment and human infrastructures makes them worthy of particular attention. The main similarity between the three phenomena is the transportation of fine particles, i.e., dust, over distances of several tens to thousands of kilometers, whereas the main difference is the origin and distribution of the particle load in the environment. Finally, we propose a thermal model for the volcanic case, which is applicable to any particulate currents sedimenting and depositing dust on Earth.


Dust storms Subaqueous flows Volcanic ash Flow temperature Modeling Experiments Rock physics Mediterranean 



We thank two reviewers, guest editor Arnau Folch and the editorial staff for making suggestions on the topic of dust and for assisting this manuscript.


  1. Al-Awadhi JM, Al-Dousari AM, Khalaf FI (2014) Influence of land degradation on the local rate of dust fallout in Kuwait. Atmos Clim Sci 4:437–446Google Scholar
  2. Báez W, Arnosio M, Chiodi A, Ortiz-Yañes A, Viramonte G, Bustos E, Giordano G, López JF (2015) Estratigrafía y evolución del Complejo Volcánico Cerro Blanco, Puna Austral, Argentina. Rev Mex Cienc Geol 32:1–21Google Scholar
  3. Branney MJ, Kokelaar BP (1992) A reappraisal of ignimbrite emplacement—progressive aggradation and changes from particulate to nonparticulate flow during emplacement of high-grade ignimbrite. Bull Volcanol 54:504–520CrossRefGoogle Scholar
  4. Breard ECP, Lube G, Cronin SJ, Valentine GA (2015) Transport and deposition processes of the hydrothermal blast of the 6 August 2012 Te Maari eruption, Mt. Tongariro. Bull Volcanol 77:100–118Google Scholar
  5. Bursik MI, Woods AW (1996) The dynamics and thermodynamics of large ash flows. Bull Volcanol 58:175–193CrossRefGoogle Scholar
  6. Butler RWH, Eggenhuisen JT, Haughton P, McCaffrey WD (2015) Interpreting syndepositional sediment remobilization and deformation beneath submarine gravity flows; a kinematic boundary layer approach. J Geol Soc. doi: 10.1144/jgs2014-150 Google Scholar
  7. Caricchi C, Vona A, Corrado S, Giordano G, Romano C (2014) 79 AD Vesuvius PDC deposits’ temperatures inferred from optical analysis on woods charred in-situ in the Villa dei Papiri at Herculaneum (Italy). J Volcanol Geotherm Res 289:14–25CrossRefGoogle Scholar
  8. Charbonnier SJ, Doronzo DM, Esposti Ongaro T (2013) A benchmarking exercise to promote inter-comparison for numerical models of pyroclastic density currents. IAVCEI 2013 Scientific Assembly, July 20-24, Kagoshima, JapanGoogle Scholar
  9. Cioni R, Gurioli L, Lanza R, Zanella E (2004) Temperatures of A.D. 79 pyroclastic density current deposits (Vesuvius, Italy). J Geophys Res 109:B02207. doi: 10.1029/2002JB002251 CrossRefGoogle Scholar
  10. Dellino P, Buttner R, Dioguardi F, Doronzo DM, La Volpe L, Mele D, Sonder I, Sulpizio R, Zimanowski B (2010) Experimental evidence links volcanic particle characteristics to pyroclastic flow hazard. Earth Planet Sci Lett 295:314–320CrossRefGoogle Scholar
  11. Doronzo DM, Dellino P (2011) Interaction between pyroclastic density currents and buildings: numerical simulation and first experiments. Earth Planet Sci Lett 310:286–292CrossRefGoogle Scholar
  12. Doronzo DM, de Tullio MD, Dellino P, Pascazio G (2011) Numerical simulation of pyroclastic density currents using locally refined Cartesian grids. Comput Fluids 44:56–67CrossRefGoogle Scholar
  13. Doronzo DM, Martí J, Sulpizio R, Dellino P (2012) Aerodynamics of stratovolcanoes during multiphase processes. J Geophys Res 117:B01207. doi: 10.1029/2011JB008769 CrossRefGoogle Scholar
  14. Doronzo DM, Khalaf EA, Dellino P, de Tullio MD, Dioguardi F, Gurioli L, Mele D, Pascazio G, Sulpizio R (2015) Local impact of dust storms around a suburban building in arid and semi-arid regions: numerical simulation examples from Dubai and Riyadh, Arabian Peninsula. Arab J Geosci 8:7359–7369CrossRefGoogle Scholar
  15. Folch A (2012) A review of tephra transport and dispersal models: evolution, current status, and future perspectives. J Volcanol Geotherm Res 235–236:96–115CrossRefGoogle Scholar
  16. Folch A, Sulpizio R (2010) Evaluating long-range volcanic ash hazard using supercomputing facilities: application to Somma-Vesuvius (Italy), and consequences for civil aviation over the Central Mediterranean area. Bull Volcanol 72:1039–1059CrossRefGoogle Scholar
  17. Giordano G, Dobran F (1994) Computer simulations of the Tuscolano Artemisio’s second pyroclastic flow unit (Alban Hills, Latium, Italy). J Volcanol Geotherm Res 61:69–94CrossRefGoogle Scholar
  18. Gurioli L, Zanella E, Pareschi MT, Lanza R (2007) Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 1. Flow direction and deposition. J Geophys Res 112:B05213. doi: 10.1029/2006JB004444 CrossRefGoogle Scholar
  19. Jenkins JT, Meiburg E, Valance A (2015) Report on the program “Fluid-mediated particle transport in geophysical flows” at the Kavli Institute for Theoretical Physics, UC Santa Barbara, September 23 to December 12, 2013. Phys Fluids 27:096601. doi: 10.1063/1.4928764 CrossRefGoogle Scholar
  20. Kneller BC, Buckee C (2000) The structure and fluid mechanics of turbidity currents: a review of some recent studies and their geological implications. Sedimentology 47:62–94CrossRefGoogle Scholar
  21. Kok JF, Parteli EJR, Michaels TI, Karam DB (2012) The physics of wind-blown sand and dust. Rep Prog Phys 75:1–72CrossRefGoogle Scholar
  22. Lesti C, Porreca M, Giordano G, Mattei M, Cas RAF, Wright HMN, Folkes CB, Viramonte G (2011) High-temperature emplacement of the Cerro Galán and Toconquis Group ignimbrites (Puna plateau, NW Argentina) determined by TRM analyses. Bull Volcanol 73:1535–1565CrossRefGoogle Scholar
  23. Lucchi F, Tranne C, De Astis G, Keller J, Losito R, Morche W (2008) Stratigraphy and significance of Brown Tuffs on the Aeolian Islands (southern Italy). J Volcanol Geotherm Res 177:49–70CrossRefGoogle Scholar
  24. Martí J, Diez-Gil JL, Ortiz R (1991) Conduction model for the thermal influence of lithic clasts in mixtures of hot gases and ejecta. J Geophys Res 96:21879–21885CrossRefGoogle Scholar
  25. Meiburg E, Kneller BC (2010) Turbidity currents and their deposits. Annu Rev Fluid Mech 42:135–156CrossRefGoogle Scholar
  26. Natsagdorj L, Jugder D, Chung YS (2003) Analysis of dust storms observed in Mongolia during 1937–1999. Atmos Environ 37:1401–1411CrossRefGoogle Scholar
  27. Parker G, Garcia M, Fukushima Y, Yu W (1987) Experiments on turbidity currents over an erodible bed. J Hydraul Eng 52:123–147CrossRefGoogle Scholar
  28. Postma G, Cartigny MJB (2014) Supercritical and subcritical turbidity currents and their deposits—a synthesis. Geology. doi: 10.1130/G35957.1 Google Scholar
  29. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1002CrossRefGoogle Scholar
  30. Prospero JM, Bullard JE, Hodgkins R (2012) High-latitude dust over the North Atlantic: inputs from Icelandic proglacial dust storms. Science 335:1078–1082CrossRefGoogle Scholar
  31. Prosser G, Bentivenga M, Laurenzi MA, Caggianelli A, Dellino P, Doronzo DM (2008) Late Pliocene volcaniclastic products from Southern Apennines: distal witness of early explosive volcanism in the central Tyrrhenian Sea. Geol Mag 145:521–536CrossRefGoogle Scholar
  32. Rose WI, Durant AJ (2009) Fine ash content of explosive eruptions. J Volcanol Geotherm Res 186:32–39CrossRefGoogle Scholar
  33. Sulpizio R, Folch A, Costa A, Scaini C, Dellino P (2012) Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: implications on civil aviation. Bull Volcanol 74:2205–2218CrossRefGoogle Scholar
  34. Sulpizio R, Dellino P, Doronzo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–65CrossRefGoogle Scholar
  35. Watt SFL, Talling PJ, Hunt JE (2014) New insights into the emplacement dynamics of volcanic island landslides. Oceanography 27:46–57CrossRefGoogle Scholar
  36. Woods AW (2010) Turbulent plumes in nature. Annu Rev Fluid Mech 42:391–412CrossRefGoogle Scholar
  37. Xu JP, Noble MA, Rosenfeld LK (2004) In-situ measurements of velocity structure within turbidity currents. Geophys Res Lett 31:L09311. doi: 10.1029/2004GL019718 Google Scholar
  38. Yarushina VM, Bercovici D, Michaut C (2015) Two-phase dynamics of volcanic eruptions: particle size distribution and the conditions for choking. J Geophys Res. doi: 10.1002/2014JB011195 Google Scholar

Copyright information

© Saudi Society for Geosciences 2016

Authors and Affiliations

  • Domenico M. Doronzo
    • 1
    • 2
    Email author
  • Joan Martí
    • 3
  • Pierfrancesco Dellino
    • 4
  • Guido Giordano
    • 5
  • Roberto Sulpizio
    • 4
  1. 1.Dipartimento di Meccanica, Matematica e Management, Politecnico di BariBariItaly
  2. 2.Centro de Geociencias, Universidad Nacional Autonoma de MexicoQueretaroMexico
  3. 3.Institute of Earth Sciences “Jaume Almera”, CSICBarcelonaSpain
  4. 4.Dipartimento di Scienze della Terra e GeoambientaliUniversità degli Studi di BariBariItaly
  5. 5.Dipartimento di Scienze, Sezione di Scienze GeologicheUniversità “Roma Tre”RomeItaly

Personalised recommendations