Vertical land movement over China coasts determined by tide gauge and satellite altimetric data

  • Jinyun GuoEmail author
  • Jianbo Wang
  • Zhibo Hu
  • Xin Liu
  • Qiaoli Kong
  • Chunmei Zhao
Original Paper


Sea level change (SLC) extracted from tide gauge data references to the benchmark fixed coastal land. Sea level change determined from satellite altimetric data references to ellipsoid with respect to the Earth’s mass center in a terrestrial reference frame. In order to study the vertical land movement over China coasts, we simultaneously process altimetric data of TOPEX/Poseidon (T/P), Jason-1 and Jason-2, and tide gauge data of 21 stations from 1993 to 2012. We use altimetric data in the tandem stages to correct biases point by point between T/P and Jason-1, Jason-1 and Jason-2 to get precise sea level changes over China seas. Monthly and yearly averaged sea level changes near the corresponding tide gauge stations are estimated from tide gauge data from University of Hawaii Sea Level Center (UHSLC) and Permanent Service for Mean Sea Level (PSMSL). Correlation coefficients between two time series of SLCs determined by 21 tide gauge stations and altimetry data near each station with the same time span are calculated. The result shows that there are 8 stations correlation coefficient between 0.6 and 0.9, 10 stations correlation coefficient between 0.3 and 0.6, and 3 stations correlation coefficient below 0.3 which indicate that SLCs from these two techniques have the identical trends. Differences of SLC rates determined from altimetry data and tide gauge data can stand for the vertical land movement over China coasts. Fifteen tide gauge stations were selected over China coast whose data integrities are high, time spans are long, and correlation coefficients with altimetry SLCs are greater than 0.4. Lands over China mainland coast sink except Laohutan and Shanwei in this study. The land coast sink ranges of China mainland is mostly from −0.05 to −0.58 cm/year but the most settlement takes place in Haikou which sink up to −1.71 cm/year. Laohutan and Shanwei stations rise at 0.3 and 0.72 cm/year, respectively. Lands over Taiwan Island and Hong Kong basically rise in these 20 years and the rise range is from 0.11 to 0.47 cm/year.


Vertical land movement Satellite altimetry Tide gauge China coast Sea level change 



We are very grateful to anonymous reviewers for their helpful comments and proposals. We sincerely thank AVISO for providing satellite altimetry data, and UHSLC and PSMSL for providing tide gauge data. This study is partially supported by the National Natural Science Foundation of China (Grant No. 41374009), the Public Benefit Scientific Research Project of China (Grant No. 201412001), the Shandong Natural Science Foundation of China (Grant No. ZR2013DM009), the Special Project of Basic Science and Technology of China (Grant No. 2015FY310200), and the SDUST Research Fund (Grant No. 2014TDJH101).


  1. AVISO/Altimetry (1996) AVISO user handbook: merged TOPEX/Poseidon products (GDR-Ms). AVI-NT-02-101-CNGoogle Scholar
  2. AVISO, PODAAC (2012) AVISO and PODAAC user handbook: IGDR and GDR Jason products. SLAP-MU-M5-OP-13184-CN (AVISO), JPL D-21352 (PODAAC)Google Scholar
  3. Baker TF (1993) Absolute sea level measurements, climate change and vertical crustal movements. Glob Planet Chang 8(3):149–159. doi: 10.1016/0921-8181(93)90022-G CrossRefGoogle Scholar
  4. Beckley BD, Zelensky NP, Luthcke SB, Callahan PS (2004) Towards a seamless transition from TOPEX/Poseidon to Jason-1. Mar Geod 27(3-4):373–389. doi: 10.1080/01490410490889148 CrossRefGoogle Scholar
  5. Beckley BD, Zelensky NP, Holmes SA, Lemoine FG, Ray RD, Mitchum GT, Desai SD, Brown ST (2010) Assessment of the Jason-2 extension to the TOPEX/Poseidon, Jason-1 sea-surface height time series for global mean sea level monitoring. Mar Geod 33(S1):447–471. doi: 10.1080/01490419.2010.491029 CrossRefGoogle Scholar
  6. Braitenberg C, Mariani P, Tunini L, Grillo B, Nagy I (2011) Vertical crustal motions from differential tide gauge observations and satellite altimetry in southern Italy. J Geodyn 51(4):233–244. doi: 10.1016/j.jog.2010.09.003 CrossRefGoogle Scholar
  7. Caccamise DJ, Merrifield MA, Bevis M, Foster J, Firing YL, Schenewerk MS, Taylor FW, Thomas DA (2005) Sea level rise at Honolulu and Hilo, Hawaii: GPS estimates of differential land motion. Geophys Res Lett 32, L03607. doi: 10.1029/2004GL021380 CrossRefGoogle Scholar
  8. Cazenave A, Dominh K, Ponchaut F, Soudarin L, Cretaux JF, Le Provost C (1999) Sea level changes from TOPEX/Poseidon altimetry and tide gauge, and vertical crustal motions from DORIS. Geophys Res Lett 26:2077–2080. doi: 10.1029/1999GL900472 CrossRefGoogle Scholar
  9. Chelton BB, Ries JC, Haines BJ, Fu LL, Callanan PS (2001) Satellite altimetry. In: Fu LL, Cazenave A (eds) Satellite altimetry and earth science. Academic, San DiegoGoogle Scholar
  10. Ding X, Zheng D, Chen Y, Chao J, Li Z (2001) Sea level change in Hong Kong from tide gauge measurements of 1954-1999. J Geod 74(10):683–689. doi: 10.1007/s001900000128 CrossRefGoogle Scholar
  11. Dumont JP, Rosmorduc V, Picot N, Bronner E, Desai S, Bonekamp H, Figa J, Lillibridge J, Scharroo R (2011) OSTM/Jason-2 products handbook. CNES: SALP-MU-M-OP-15815-CN, EUMETSAT: EUM/OPS-JAS/MAN/08/0041, JPL: OSTM-29-1237, NOAA/NESDIS: Polar Series/OSTM J400Google Scholar
  12. Fu LL, Cazenave A (2001) Satellite altimetry and earth sciences: a handbook of techniques and applications. Academic, San DiegoGoogle Scholar
  13. Gröger M, Plag HP (1993) Estimations of a global sea level trend: limitations from the structure of the PSMSL global sea level data set. Glob Planet Chang 8(3):161–179. doi: 10.1016/0921-8181(93)90023-H CrossRefGoogle Scholar
  14. Guo J, Hu Z, Wang J, Chang X, Li G (2015a) Sea level changes of China seas and neighboring ocean based on satellite altimetry missions from 1993 to 2012. J Coast Res SI 73:17–21. doi: 10.2112/SI73-004.1 CrossRefGoogle Scholar
  15. Guo JY, Wang JB, Hu ZB, Hwang C, Chen CF, Gao YG (2015b) Temporal-spatial variations of sea level over China seas derived from altimeter data of TOPEX/Poseidon, Jason-1 and Jason-2 from 1993 to 2012. Chin J Geophys 58(9):3103–3120. doi: 10.6038/cjg20150908 Google Scholar
  16. Hu ZB, Guo JY, Tan ZG, Chang XT (2014) Sea level variation in Hong Kong determined with TOPEX/Poseidon and tide gauge. J Geodesy Geodynamics 34(4):56–59Google Scholar
  17. Jiao WH, Wei ZQ, Guo HR, Fu Y (2004) Determination of the absolute rate of sea level by using GPS reference station and tide gauge data. Geomatics Info Sci Wuhan Univ 29(10):901–904Google Scholar
  18. Karabil S (2011) Determination of sea level trends and vertical land motions from satellite altimetry and tide gauge observations at the Mediterranean coast of Turkey. Master thesis, Middle East Technical University, Ankara, TurkeyGoogle Scholar
  19. Kuo CY, Shum CK, Braun A, Mitrovica JX (2004) Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia. Geophys Res Lett 31(1):L01608. doi: 10.1029/2003GL019106 CrossRefGoogle Scholar
  20. Kuo CY, Shum CK, Braun A, Cheng KC, Yi Y (2008) Vertical motion determined using satellite altimetry and tide gauges. Terr Atmos Ocean Sci 19(1-2):21–35. doi: 10.3319/TAO.19.1-2.21(SA) CrossRefGoogle Scholar
  21. Larsen CF, Echelmeyer KA, Freymueller JT, Motyka RJ (2003) Tide gauge records of uplift along the northern Pacific-north America plate boundary, 1937 to 2001. J Geophys Res 108(B4):2216. doi: 10.1029/2001/JB001685 Google Scholar
  22. Mäkinen J, Saaranen V (1998) Determination of post-glacial land uplift from the three precise levellings in Finland. J Geod 72:516–529. doi: 10.1007/s001900050191 CrossRefGoogle Scholar
  23. Marcos M, Wöppelmann G, Bosch W, Savcenko R (2007) Decadal sea level trends in the Bay of Biscay from tide gauges, GPS and TOPEX. J Mar Syst 68:529–536. doi: 10.1016/j.jmarsys.2007.02.006 CrossRefGoogle Scholar
  24. Nerem R, Mitchum G (2002) Estimates of vertical crustal motion derived from differences of TOPEX/Poseidon and tide gauge sea level measurements. Geophys Res Lett 29:1934. doi: 10.1029/2002GL015037 CrossRefGoogle Scholar
  25. Ostanciaux É, Husson L, Choblet G, Robin C, Pedoja K (2012) Present-day trends of vertical ground motion along the coast lines. Earth Sci Rev 110:74–92. doi: 10.1016/j.earscirev.2011.10.004 CrossRefGoogle Scholar
  26. Pagiatakis SD, Salib P (2003) Historical relative gravity observations and the time rate of change of gravity due to postglacial rebound and other tectonic movements in Canada. J Geophys Res 108:2406. doi: 10.1029/2001JB001676 Google Scholar
  27. Santamaría-Gómez A, Gravelle M, Wöppelmann G (2014) Long-term vertical land motion from double-differenced tide gauge and satellite altimetry data. J Geod 88:207–222. doi: 10.1007/s00190-013-0677-5 CrossRefGoogle Scholar
  28. Shugar DH, Walker IJ, Lian OB, Eamer JBR, Neudorf C, McLaren D, Fedje D (2014) Post-glacial sea-level change along the Pacific coast of North America. Quat Sci Rev 97:170–192. doi: 10.1016/j.quascirev.2014.05.022 CrossRefGoogle Scholar
  29. Smith WHF, Wessel P (1990) Gridding with continuous curvature spines in tension. Geophysics 55:293–305. doi: 10.1190/1.1442837 CrossRefGoogle Scholar
  30. Tapley BD, Ries JC, Davis GW, Eanes RJ, Schutz BE, Shum CK, Watkins MM, Marshall JA, Nerem RS, Putney BH, Klosko SM, Luthcke SB, Pavlis D, Williamson RG, Zelensky NP (1994) Precision orbit determination for TOPEX/Poseidon. J Geophys Res 99(C12):24383–24404. doi: 10.1029/94JC01645 CrossRefGoogle Scholar
  31. Teferle FN, Bingley RM, Williams SDP, Baker TF, Dodson AH (2006) Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea-level at tide-gauges in the UK. Phil Trans R Soc A 364:917–930. doi: 10.1098/rsta.2006.1746 CrossRefGoogle Scholar
  32. Trisirisatayawong I, Naeije M, Simons W, Fenoglio-Marc L (2011) Sea level change in the Gulf of Thailand from GPS-corrected tide gauge data and multi-satellite altimetry. Glob Planet Chang 76(3-4):137–151. doi: 10.1016/j.gloplacha.2010.12.010 CrossRefGoogle Scholar
  33. Tunini L, Braitenberg C, Ricker R, Mariani P, Grillo B, Fenoglio-Marc L (2010) Vertical land movement for the Italian coasts by altimetric and tide gauge measurements. Proc. ESA Living Planet Symposium, Bergen, Norway, ESA SP-686Google Scholar
  34. Yildiz H, Andersen OB, Simav M, Aktug B, Ozdemir S (2013) Estimates of vertical land motion along the southwestern coasts of Turkey from coastal altimetry and tide gauge data. Adv Space Res 51:1572–1580. doi: 10.1016/j.asr.2012.11.011 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2016

Authors and Affiliations

  • Jinyun Guo
    • 1
    • 2
    Email author
  • Jianbo Wang
    • 1
  • Zhibo Hu
    • 1
    • 3
  • Xin Liu
    • 1
  • Qiaoli Kong
    • 1
    • 2
  • Chunmei Zhao
    • 4
  1. 1.College of Geodesy and GeomaticsShandong University of Science and TechnologyQingdaoChina
  2. 2.State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science & TechnologyShandong University of Science and TechnologyQingdaoChina
  3. 3.School of Surveying and Land Information EngineeringHenan Polytechnic UniversityJiaozuoChina
  4. 4.Chinese Academy of Surveying and MappingBeijingChina

Personalised recommendations