Air pollution in the Arabian Peninsula (Saudi Arabia, the United Arab Emirates, Kuwait, Qatar, Bahrain, and Oman): causes, effects, and aerosol categorization

  • Ashraf FarahatEmail author
Original Article
Part of the following topical collections:
  1. DUST


Air pollution over six countries in the Arabian Peninsula (AP), including the Kingdom of Saudi Arabia (KSA), the United Arab Emirates (UAE), Kuwait, Qatar, Bahrain, and Oman, is shown to include particulates, greenhouse gases, nitrogen dioxide, and sulfur dioxide. Distribution of the pollutants is strongly affected by major sandstorms that frequent the AP. Concentration of these pollutants is analyzed. Unprecedented infrastructure activities, overusing governmental subsidized energy, water desalination, heavy traffic in large cities, and cement plants are found to be the main reasons for the pollutants. In 2010, Qatar recorded the highest carbon dioxide (CO2) emission per capita with 40.31 metric tons. The KSA had the lowest CO2 per capita but recorded the highest emission resulting from the cement industry. Bahrain recorded the lowest cement industry emissions. Aerosol Robotic Network (AERONET) data retrieval over three sites in the AP depicted significant anthropogenic particles mixed with the desert dust over the AP.


Arabian Peninsula Pollution Aerosols Dust storms AERONET Air quality 



The authors would like to acknowledge the support provided by KACST for funding this work under grant no. MT-32-76. The support provided by the Deanship of Research at King Fahd University of Petroleum and Minerals (KFUPM) is gratefully acknowledged. Analyses and visualizations used in this study were produced with the Giovanni online data system and developed and maintained by the NASA GES DISC. We also acknowledge the MODIS mission scientists and associated NASA personnel for the production of the data used in this research effort. Furthermore, the authors would like also to acknowledge the help of Dr. A. Umran Dogan, University of Iowa, and Dr. Hesham El-Askary, Chapman University, for their support.


  1. Abdul-Wahab SA (2003) SO2 dispersion and monthly evaluation of the industrial source complex short-term (ISCST32) model at Mina Al-Fahal Refinery, Sultanate of Oman. Environ Manag 31(2):0276–0291CrossRefGoogle Scholar
  2. Abdul-Wahab SA (2005) Monitoring of air pollution in the atmosphere around Oman Liquid Natural Gas (OLNG) plant. J Environ Sci Health A Tox Hazard Subst Environ Eng 40(3):559–570CrossRefGoogle Scholar
  3. Abdul-Wahab SA, Charles SB, Siddiqui RA (2005a) Study the relationship between the health effects and characterization of thermal inversions in the Sultanate of Oman. Atmos Environ 30(39):5466–5471CrossRefGoogle Scholar
  4. Abdul-Wahab SA, Worthing MA, Al-Maamari S (2005b) Mineralogy of atmospheric suspended dust in three indoor and one outdoor location in Oman. Environ Monit Assess 107:313–327CrossRefGoogle Scholar
  5. Abdul-Wahab SA, El Kamel A, Al Balushi AS, Al Damkhi AM, Siddiqui RA (2008) Modeling of nitrogen oxides (NOx) concentrations resulting from ships at berth. J Environ Sci Health A 43:1706–1716CrossRefGoogle Scholar
  6. Al Ali AR, Zualkernan I, Aloul F (2010) A mobile GPRS-sensors array for air pollution monitoring. IEEE Sensors J 8(10):1666–1671CrossRefGoogle Scholar
  7. Al Harbi BH (2009) Airborne dust in Saudi Arabia: source areas, entrainment, simulation and composition. Monash University, Australia, Ph.D. dissertation Google Scholar
  8. Al Katheeri E, Al Jallad F, Al Omar M (2012) Assessment of gaseous and particulate pollutants in the ambient air in Al Mirfa City, United Arab Emirates. J Environ Prot 3(7):640–647CrossRefGoogle Scholar
  9. Al Sabbagh M, Siu YL, Barrett J, Gelil IA (2013) CO2 emissions and fuel consumption of passenger vehicles in Bahrain: current status and future scenarios. Sustainability Research Institute (SRI), School of Earth and Environment, The University of Leeds, LeedsGoogle Scholar
  10. Alamodi AO, Mashat AS, Abdel Basset HM (2008) On the relation between atmospheric pressure systems and rainfall prediction over the Kingdom of Saudi Arabia. King Abdulaziz University, Kingdom of Saudi Arabia, Project number: 302/427 supported by King Abdulaziz University Google Scholar
  11. Alolayan MA, Brown KW, Evans JS, Bouhamra WS, Koutrakis P (2013) Source apportionment of fine particles in Kuwait City. Sci Total Environ 448:14–25CrossRefGoogle Scholar
  12. Arimoto R, Duce RA, Ray BR (1989) Concentrations, sources and air-sea exchange of trace elements in the atmosphere over the Pacific Ocean. In: Riley JP, Chester R, Duce RA (eds) Chemical oceanography, 10. Academic, 149, p 107Google Scholar
  13. Baawain MS, Al-Serihi AS (2014) Systematic approach for the prediction of ground-level air pollution (around an industrial port) using an artificial neural network. Aerosol Air Qual Res 14(1):124–134Google Scholar
  14. Beirle S and Wagner T (2012) Trace gases (NO2). Satellite Group, Max-Planck-Institute for Chemistry in Mainz, Germany. Available online: Accessed 27 Dec 2012
  15. Böer B (1997) An introduction to the climate of the United Arab Emirates (review). J Arid Environ 35:3–16CrossRefGoogle Scholar
  16. Böer B (1998) Anthropogenic factors and their potential impacts on the sustainable development of Abu Dhabi’s terrestrial biological resources. Int J Sustainable Dev World Ecol 5(2):125–135CrossRefGoogle Scholar
  17. Brown KW, Bouhamra W, Lamoureux DP, Evans JS, Koutrakis P (2008) Characterization of particulate matter for three sites in Kuwait. J Air Waste Manage Assoc 58(8):994–1003CrossRefGoogle Scholar
  18. Charabi Y, Al-Bulooshi A, Al-Yahyai S (2013) Assessment of the impact of the meteorological meso-scale circulation on air quality in arid subtropical region. Environ Monit Assess 185(3):2329–2342CrossRefGoogle Scholar
  19. Doms G, and Schaettler U (2002) Consortium for small-scale modeling (COSMO). Newsletter Consortium for small-scale modeling, 2, G. Doms and U. Schaettler, Eds., 220 pp. [Available from Deutscher Wetterdienst, P.O. Box 100465, 63004 Offenbach, Germany].Google Scholar
  20. Doronzo D, de Tullio M, Pascazio G, Dellino P, Liu G (2015) On the interaction between shear dusty currents and buildings in vertical collapse: theoretical aspects, experimental observations, and 3D numerical simulation. J Volcanol Geotherm Res 302:190–198CrossRefGoogle Scholar
  21. Draxler RR, Hess GD (1998) An overview of the HYSPLIT 4 modeling system for trajectories, dispersion and deposition. Aust Meteorol Mag 47(4):295–308Google Scholar
  22. Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J Geophys Res 105:206730–220696Google Scholar
  23. Dubovik O, Holben BN, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanre D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608CrossRefGoogle Scholar
  24. Dubovik O, Sinyuk A, Lapyonok T, Holben B, Mischenko M, Yang P, Eck T, Volten H, Muñoz O, Veihelmann B, van der Zande WJ, Leon J., Sorokin M, and Slutsker I. (2006) The application of spheroid models to account for aerosol particle non-sphericity in remote sensing of desert dust. J. Geophys. Res. 111. doi:  10.1029/2005JD006619
  25. Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O’Neill NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res 104:31333–31349CrossRefGoogle Scholar
  26. Eck TF et al (2009) Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site. J Geophys Res 114:D11201. doi: 10.1029/2008JD010870 CrossRefGoogle Scholar
  27. Edgell HS (2006) Arabian deserts: nature, origin, and evaluation. Springer, Netherlands, pp 239–261Google Scholar
  28. El Assouli SM, Al Qahtani MH, Milaat WM (2007) Genotoxicity of air borne particulates assessed by comet and the salmonella mutagenicity test in Jeddah, Saudi Arabia. Int J Environ Res Public Health 4:216–223CrossRefGoogle Scholar
  29. El Shobokshy M, Al Saedi Y (1993) The impact of the Gulf War on the Arabian environment. 1. Particulate pollution and reduction of solar irradiance. Atmos Environ Part A-Gen Top 27(1):95–108CrossRefGoogle Scholar
  30. Elagib NA, Addin Abdu AS (1997) Climate variability and aridity in Bahrain. J Arid Environ 36:405–419CrossRefGoogle Scholar
  31. Engelbrecht JP, McDonald EV, Gillies JA, Jayanty RK, Casuccio M, Gertler AW (2009) Characterizing mineral dusts and other aerosols from the Middle East. Part 1: ambient aerosols. Inhal Toxicol 21(4):297–326CrossRefGoogle Scholar
  32. Environmental Protection Report (EPA) for sulfur dioxide, United States (2015)
  33. Farahat A, El-Askary H, and Al-Shaibani A (2015) Study of aerosols’ characteristics and dynamics over the Kingdom of Saudi Arabia using a multi sensor approach combined with ground observations. Advances In Meteorology, Article ID 247531, in press.Google Scholar
  34. Fatahalla A, Ahmed M (1990) SO2 and NOx emissions due to fossil fuel combustion in Saudi Arabia: a preliminary inventory. Atmos Environ Part A Gen Top 24(12):2917–2926CrossRefGoogle Scholar
  35. General Directorate of Traffic (2011) Traffic accidents facts in Kingdom of BahrainGoogle Scholar
  36. Gibson JM, Farah ZS (2012) Environmental risks to public health in the United Arab Emirates: a quantitative assessment and strategic plan. Environ Health Perspect 120(5):681–686CrossRefGoogle Scholar
  37. Givehchi R, Arhami M, Tajrishy M (2013) Contribution of the Middle Eastern dust source areas to PM10 levels in urban receptors: case study of Tehran, Iran. Atmos Environ 75:287–295CrossRefGoogle Scholar
  38. Guoshun Z, Xinyi S, Rong Z, Xu H, Ying W, Qingwel S, Yan L, Xing W (2011) The true cost of coal, coal dust storms: toxic winds. Green Peace Report, ChinaGoogle Scholar
  39. Habeebullah TM (2014) Modeling particulate matter (PM10) in Makkah, Saudi Arabia—a viewpoint of health impact. J Clean Energy Technol 2(3):196–200CrossRefGoogle Scholar
  40. Harder E, Gibson JM (2011) The costs and benefits of large-scale solar photovoltaic power production in Abu Dhabi, United Arab Emirates. Renew Energy 36(2):789–796CrossRefGoogle Scholar
  41. Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET: a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16CrossRefGoogle Scholar
  42. Irwin JG, Williams ML (1988) Acid rain: chemistry and transport. Environ Pollut 50:29–59CrossRefGoogle Scholar
  43. Khamdan SA, Al Madany I, Muhussain E (2009) Temporal and spatial variations of the quality of ambient air in the Kingdom of Bahrain during 2007. Environ Monit Assess 154(1–4):241–252CrossRefGoogle Scholar
  44. Khodeir M, Shamy M, Alghamdi M, Zhong M, Sun H, Costa M, Chen LC, Maciejcczyk PM (2012) Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmos Pollut Res 3:331–340CrossRefGoogle Scholar
  45. Kwarteng A, Dorvlo AS, Kumar GT (2009) Analysis of a 27-year rainfall data (1977–2003) in the Sultanate of Oman. Int J Climatol 29:605–617CrossRefGoogle Scholar
  46. Laurent B, Marticorena B, Bergametti G, Le’on J, Mahowald N (2008) Modeling mineral dust emissions from the Sahara Desert using new surface properties and soil database. J Geophys Res 113:D14218CrossRefGoogle Scholar
  47. Li Y, Gibson JM, Jat P, Puggioni G, Hasan M, West JJ, Serre M (2010) Burden of disease attributed to anthropogenic air pollution in the United Arab Emirates: estimates based on observed air quality data. Sci Total Environ 408(23):5784–5793CrossRefGoogle Scholar
  48. Madany I, Danish S (1988) Measurement of air pollution in Bahrain. Environ Int 14(1):49–58CrossRefGoogle Scholar
  49. Madany I, Danish S (1993) Spatial and temporal patterns in nitrogen-dioxide concentrations in a hot desert region. Atmos Environ Part A-Gen Top 27(15):2385–2391CrossRefGoogle Scholar
  50. Maghrabi A, Al Harbi B, Tapper N (2011) Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity. Atmos Environ 13:2164–2173CrossRefGoogle Scholar
  51. Marcella P, Elfatih A (2008) The hydro climatology of Kuwait: explaining the variability of rainfall at seasonal and interannual time scales. J Hydrometeorol 9(5):1095–1105CrossRefGoogle Scholar
  52. Meo SA, Al-Kheraiji MF, Alfaraj ZF, Alwehaibi NA, Aldereihim AA (2013) Respiratory and general health complaints in subjects exposed to sandstorm at Riyadh, Saudi Arabia. Pak J Med Sci 29(2):642–646CrossRefGoogle Scholar
  53. Munir S, Habeebullah T, Seroji A, Morsy E, Mohammed A, Abu Saud W, Awad A (2013) Modeling particulate matter concentrations in Makkah, applying a statistical modeling approach. Aerosol Air Qual Res 13(3):901–910Google Scholar
  54. Nasrallah HA, Nieplova E, Ramadan E (2004) Warm season extreme temperature events in Kuwait. J Arid Environ 56:357–371CrossRefGoogle Scholar
  55. Nazzal N (2009) Heavy snowfall on Ras Al Khaimah’s Jebel Jais mountain cluster. Gulf News. Retrieved on 31 Jan 2009.
  56. Ning AI, Polenske KR (2008) Socioeconomic impact analysis of yellow-dust storms: an approach and case study for Beijing. Econ Syst Res 20(2):187–203CrossRefGoogle Scholar
  57. Notaro M, Alkolibi F, Fadda E, Bakhrjy F (2013) Trajectory analysis of Saudi Arabian dust storms. J Geophys Res Atmos 118:6028–6043CrossRefGoogle Scholar
  58. Othman N, Mat-Jafri MZ, San LH (2010) Estimating particulate matter concentration over arid region using Satellite Remote Sensing: a case study in Makkah, Saudi Arabia. Mod Appl Sci 4:11–20CrossRefGoogle Scholar
  59. Pease PP, Tchakerian VP, Tindale NW (1998) Aerosols over the Arabian Sea: geochemistry and source areas for aeolian desert dust. J Arid Environ 39:477–496CrossRefGoogle Scholar
  60. PMEW (2012) General Commission for the Protection of Marine Resources, Environment & Wildlife, Bahrain’s Second National CommunicationGoogle Scholar
  61. Prakash J, Stenchikov P, Kalenderski G, Osipov S, Bangalath H (2015) The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmos Chem Phys 15:199–222CrossRefGoogle Scholar
  62. Prospero J, Nees R, Uematsu M (1987) Deposition rate of particulate and dissolved aluminum derived from Saharan dust in precipitation at Miami, Florida. J Geophys Res 92:14723–14731CrossRefGoogle Scholar
  63. Pye K (1987) Aeolian dust and dust deposits. Academic, London, p 334Google Scholar
  64. Qatar Statistics Authority (2013), Qatar Environment Day Report.
  65. Saab B (1993) Albuterol nebulizer use in Bahrain and the burning oil-wells of Kuwait. J Environ Health 55(7):18–20Google Scholar
  66. Sabbak OA (1993) Distribution of sulfur dioxide in the atmosphere of Jiddah, Saudi Arabia. Air Waste 43(2):208–212CrossRefGoogle Scholar
  67. Sadiq M, McCain JC (1993) The Gulf War aftermath: an environmental tragedy. Kluwer, BostonCrossRefGoogle Scholar
  68. Saeed TM, Al‐Dashti H (2011) Optical and physical characterization of “Iraqi freedom” dust storm, a case study. Theor Appl Climatol 104:123–137CrossRefGoogle Scholar
  69. Shalaby A, Rappenglueck B, Eltahir E (2015) The climatology of dust aerosol over the Arabian Peninsula. Atmos Chem Phys Discuss 15:1523–1571CrossRefGoogle Scholar
  70. Shaltout AA, Boman J, Al-Malawi DR, Shehadeh ZF (2013) Elemental composition of PM2.5 particles sampled in industrial and residential areas of Taif, Saudi Arabia. Aerosol Air Qual Res 13:1356–1364Google Scholar
  71. Shmida A (1985) Biogeography of the desert flora. In: Evenari M, Noy Meir I, Goodall D (eds) Ecosystems of the world: hot deserts and arid shrublands. Elsevier, Amsterdam, 12A:23–77 Google Scholar
  72. Smirnov A, Holben BN, Dubovik O, Neil N, Eck TF (2002) Atmospheric aerosol optical properties in the Persian Gulf. Atmos Sci 59:620–634CrossRefGoogle Scholar
  73. Sokolik IN, Toon OB (1999) Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J Geophys Res 104(D8):9423–9444CrossRefGoogle Scholar
  74. Su L, Toon OB (2011) Saharan and Asian dust: similarities and differences determined by CALIPSO, AERONET, and a coupled climate-aerosol microphysical model. Atmos Chem Phys 11:3263–3280CrossRefGoogle Scholar
  75. Taylor M, Kazadzis S, Tsekeri A, Gkikas A, Amiridis V (2014) Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak. Atmos Meas Tech 7:3151–3175CrossRefGoogle Scholar
  76. Thalib L, Al-Taiar A (2012) Dust storms and the risk of asthma admissions to hospitals in Kuwait. Sci Total Environ 433:347–351CrossRefGoogle Scholar
  77. UAE Science Plan (2004) Unified aerosol experiment (UAE), prepared for DWRS, NASA, NRL, and ONR, version 1.0, September 15, 2004. Compiled and edited by Jeffrey S. Reid, Brent N. Holben, Charles Gatebe, Stuart Piketh, and Douglas L. Westphal.Google Scholar
  78. Uno I, Harada K, Satake S, Hara Y, Wang Z (2005) Meteorological characteristics and dust distribution of the Tarim Basin simulated by the nesting RAMS/CFORS dust model. J Meteorol Soc Jpn 83A:219–239CrossRefGoogle Scholar
  79. Weng Q, Yang S (2006) Urban air pollution patterns, land use, and thermal landscape: an examination of the linkage using GIS. J Environ Monit Assessment 117:463–489CrossRefGoogle Scholar
  80. White R, Stineman C, Symons J, Breysse P, Kim S, Bell M, Samet J (2008) Premature mortality in the Kingdom of Saudi Arabia associated with particulate matter air pollution from the 1991 Gulf War. Hum Ecol Risk Assess 14(4):645–664CrossRefGoogle Scholar
  81. Willis HH, MacDonald Gibson J, Shih RA, Geschwind S, Olmstead S, Hu J, Moore M (2010) Prioritizing environmental health risks in the UAE. Risk Anal 30(12):1842–1856CrossRefGoogle Scholar
  82. Yeatts KB, El-Sadig M, Leith D, Kalsbeek W, Al-Maskari F, Couper D, Olshan AF (2012) Indoor air pollutants and health in the United Arab Emirates. Environ Health Perspect 120(5):687–694CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2016

Authors and Affiliations

  1. 1.Department of Prep Year Physics, College of Applied and Supporting StudiesKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Department of Physics, Faculty of ScienceAlexandria UniversityAlexandriaEgypt

Personalised recommendations