Advertisement

Arabian Journal of Geosciences

, Volume 8, Issue 10, pp 8347–8360 | Cite as

Geochemistry and petrology of Harsin–Sahneh ophiolitic complex (NE of Kermanshah—west of Iran) an evidence of Southern Neo-Tethys Ocean tectonic

Original Paper

Abstract

Ophiolites of the Zagros orogenic belt of Iran are part of the Tethys ophiolites, linking the Middle East ophiolites and other Asian ophiolites (e.g., Pakistani and Tibetan) to the Mediterranean ophiolites (e.g., Troodos, Greek, and East European) due to their geographical position. The nature of Harsin–Sahneh ophiolite (Kermanshah), studied in this paper, is traditionally considered as one of the Mesozoic southern branch of the Neo-Tethys Ocean, and remnants of the Peri-Arabic ophiolite system obducted onto Arabian shield (Gondwana). Petrographic evidence indicates that this ophiolitic sequence consists of both mantle and crustal suites. In this complex, generally lithologies include harzburgitic and lherzolitic peridotites, isotropic and mylonitic gabbros, dyke complex, basaltic pillow lavas, and small out crop of plagiogranite. The mineral chemistry of Harsin mafic rocks is island arc setting for this part of complex and geochemistry of mafic and ultramafic rocks of Sahneh region displaying P-type mid-ocean ridge basalt (MORB) nature. The presence of basalts with different compositions in this region can be interpreted as an interaction between MORB-type and OIA-type asthenosphere. Field relationships and geochemical evidence reveal that the studied ophiolites were a part of a rifted basin at the ocean–continent transition zone formed in the south of the Neo-Tethyan Ocean. Based on the evidence, in Late Cretaceous, the subduction of Southern Neo-Tethyan Ocean beneath itself leads to not only the cessation of Southern Neo-Tethyan subduction to the branch of Sanandaj–Sirjan block but also the formation of arc and back-arc basin and related rocks in Kermanshah ophiolite. MORB magmatism occurred in the response to slowing down of the convergence rate of Neo-Tethyan and slab retreat in the Eurasian continental margin. This would also explain both the contemporaneous occurrence of MORB-type and OIB-type magmatism, as well as the lack of a magmatic evolution from depleted to enriched rocks.

Keywords

Tethyan ophiolites Arc magmatism P-type MORB Zagros Iran 

Notes

Acknowledgments

The authors wish to thank the Journal Manager and reviewers who critically reviewed the manuscript and made valuable suggestions for its improvement.

References

  1. Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. I J Earth Sci (Geologische Rundschau) 94:401–419CrossRefGoogle Scholar
  2. Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B, Spakman W, Monie P, Meyer B, Wortel R (2011) Zagros orogeny: a subduction-dominated process. Geol Mag 148:692–725CrossRefGoogle Scholar
  3. Alavi M (2007) Structures of the Zagros fold-thrust belt in Iran. Am J Sci 307(9):1064–1095CrossRefGoogle Scholar
  4. Allahyari K, Saccani E, Pourmoafi M, Beccaluva L, Masoudi F (2010) Petrology of mantle peridotites and intrusive mafic rocks from the Kermanshah ophiolitic complex (Zagros belt, Iran): implications for the geodynamic evolution of the Neo-Tethyan oceanic branch between Arabia and Iran. Ofioliti 35:71–90Google Scholar
  5. Allahyari K, Saccani E, Rahimzadeh B, Zeda O (2014) Mineral chemistry and petrology of highly magnesian ultramafic cumulates from the Sarve-Abad (Sawlava) ophiolites (Kurdistan, NW Iran): new evidence for boninitic magmatism in intra-oceanic fore-arc setting in the Neo-Tethys between Arabia and Iran. J Asian Earth Sci 79:312–328CrossRefGoogle Scholar
  6. Arvin M, Pan Y, Dargahi S, Malekizadeh A, Babaei A (2007) Petrochemistry of the Siah–Kuh granitoid stock southwest of Kerman, Iran: implications for initiation of Neotethys subduction. J Asian Earth Sci 30:474–489CrossRefGoogle Scholar
  7. Azizi H, Chung S, Tanaka T, Asahara Y (2011) Isotopic dating of the Khoy metamorphic complex (KMC), northwestern Iran: a significant revision of the formation age and magma source. Precambrian Res 185:87–94CrossRefGoogle Scholar
  8. Bizimis M, Vincent JM, Enrico Bonatti M (2000) Trace and REE content of clinopyroxene from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem Geol 165:67–85CrossRefGoogle Scholar
  9. Braud J (1987) La suture du Zagros au niveau de Kermanshah (Kurdistan iranien): reconstitution paléogéographique, évolution géodynamique, magmatique et structurale. Université Paris-Sud 450Google Scholar
  10. Deer W A, Howie R A, Zussman J (1992) An introduction to the rock forming minerals, 2nd ed. Longman, London, p 696Google Scholar
  11. Delaloye M, Desmons J (1980) Ophiolites andmelange terranes in Iran: a geochronological study and its paleotectonic implications. Tectonophysics 68:83–111CrossRefGoogle Scholar
  12. Faccenna C, Bellier O, Martinod J, Piromallo C, Regard V (2006) Slab detachment beneath eastern Anatolia: a possible cause for the formation of the North Anatolian fault. Earth Planet Sci Lett 242(1–2):85–97CrossRefGoogle Scholar
  13. Fazlnia AN, Moradian A, Rezaei K, Moazzen M, Alipour S (2007) Synchronous activity of anorthositic and S-type granitic magmas in the Chah-Dozdan batholith, Neyriz, Iran: evidence of zircon SHRIMP and monazite CHIME dating. J Sci Islamic Repub Iran 18:221–237Google Scholar
  14. Gharib F (2009) Biostratigraphy des radiolarite de Kermanshah (Iran). Unpublished doctoral dissertation, Museum Nationald’Histoire Naturelle (Paris), 343 pGoogle Scholar
  15. Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). J Asian Earth Sci 26:683–693CrossRefGoogle Scholar
  16. Goodenough KM, Styles MT, Schofield D (2010) Architecture of the Oman–UAE ophiolite: evidence for a multi-phase magmatic history. Arab J Geosci 439–458Google Scholar
  17. Hassanipak AA, Ghazi AM (2000) Petrology, geochemistry and tectonic setting of the Khoy ophiolite, northwest Iran: implications for Tethyan tectonics. J Asian Earth Sci 18:109–121CrossRefGoogle Scholar
  18. Jensen LS (1976) A new cation plot for classifying subalkalic volcanic rocks. Ontario Geological Survey Miscellaneous Paper 66Google Scholar
  19. Kaviani A, Hatzfeld D, Paul A, Tatar M, Priestley K (2009) Shear-wave splitting, lithospheric anisotropy, and mantle deformation beneath the Arabia–Eurasia collision zone in Iran. Earth Planet Sci Lett 286(3–4):371–378CrossRefGoogle Scholar
  20. Khalatbari-Jafari M, Juteau T, Bellon H, Whitechurch H, Cotton J, Emami H (2004) New geological and geochronological investigations on Khoy ophiolites and related formations. NW Iran J Asian Earth Sci 23:507–535CrossRefGoogle Scholar
  21. Kocak K, Isik F, Arslan M, Zedef V (2005) Petrological and source region characteristics of ophiolitic hornblende gabbros from the Aksaray and Kayseri regions, central Anatolian crystalline complex, Turkey. J Asian Earth Sci 25:883–891CrossRefGoogle Scholar
  22. McClusky S, Reilinger R, Mahmoud S, Ben Sari D, Tealeb A (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys J Int 155:126–138CrossRefGoogle Scholar
  23. McQuarrie N, Stock JM, Verdel C, Wernicke BP (2003) Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys Res Lett 30:2036CrossRefGoogle Scholar
  24. Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem Geol 56:207–218CrossRefGoogle Scholar
  25. Miyashiro A (1973) The Troodos ophiolitic complex was probably formed in an island arc. Earth Planet Sci Lett 19:218–224CrossRefGoogle Scholar
  26. Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran. J Asian Earth Sci 21:397–412CrossRefGoogle Scholar
  27. Mohammad E. Al-Dabbagh (2014) The Arabian plate: unique fit of the earth’s surface jig saw puzzle. Arabian Journal of Geosciences Springer Berlin/Heidelberg 130–165Google Scholar
  28. Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133Google Scholar
  29. Mouthereau F, Lacombe O, Vergés J (2012) Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532–535:27–60CrossRefGoogle Scholar
  30. Naville C, Ancel M, Andriessen, P, Ricarte P, Roure F. New constraints on the thickness of the Semail ophiolite in the Northern Emirates (2010) Arabian Journal of Geosciences .459- 475Google Scholar
  31. Nicolas A, Boudier F, Bouchez JL (1980) Interpretation of peridotite structures from ophiolitic and oceanic environments. American Journal of Sciences, E.D. Jackson Mem., volume, 28O a, pp. 192–210.Google Scholar
  32. Nisbet EG, Pearce JA (1977) Clinopyroxene composition in mafic lavas from different tectonic settings. Mineral Petrol 63:149–160CrossRefGoogle Scholar
  33. Noiret G, Montigny R, Allegre CJ (1981) Is the Vourinos complex an island arc ophiolite? Earth Planet Sci Lett 56:375–386CrossRefGoogle Scholar
  34. Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L (2008) Arcmagmatism and subduction history beneath Zagros: new report of adakites and geodynamic consequences. Lithos 106(3–4):380–398CrossRefGoogle Scholar
  35. Parlak O, Delaloye M (1999) Ages from the metamorphic sole of the Mersin ophiolite (southern Turkey). Tectonophysics 301:145–158CrossRefGoogle Scholar
  36. Parlak O, Ho¨ck V, Delaloye M (2002) The supra-subduction zone Pozanti–Karsanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos 65:205–224CrossRefGoogle Scholar
  37. Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47CrossRefGoogle Scholar
  38. Reilinger R, McClusky S (2011) Nubia–Arabia–Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys J Int 186(3):971–979CrossRefGoogle Scholar
  39. Ricou LE (1971) Le croissant ophiolitique péri-arabe, une ceinture de nappes mise en place au crétacé supérieur. Rev Géogr Phys Géol Dyn 18:327–350Google Scholar
  40. Ricou LE, Braud J, Brunn JH (1977) Le Zagros. Livre à la mémoire de A.F. de Lapparent. mémoire hors Série de la Société Géologique de. France 8:33–52Google Scholar
  41. Robertson AHF, Parlak O, Rízaoğlu T, Ünlügenç Ü, İnan N, Tasli K, Ustaömer T (2007) Tectonic evolution of the South Tethyan Ocean: evidence from the Eastern Taurus Mountains (Elaziğ region, SE Turkey). Geol Soc Lond, Spec Publ 272:231–270CrossRefGoogle Scholar
  42. Saccani E, Allahyari K, Beccaluva L, Bianchini G (2013) Geochemistry and petrology of the Kermanshah ophiolites (Iran): implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean. Gondwana Res 24(1):392–411CrossRefGoogle Scholar
  43. Sella GF, Dixon TH, Mao A (2002) REVEL: a model for recent plate velocities from space geodesy. J Geophys Res 107(B4):2081CrossRefGoogle Scholar
  44. Shahabpour J (2007) Island-arc affinity of the Central Iranian Volcanic Belt. J Asian Earth Sci 30:652–665CrossRefGoogle Scholar
  45. Shelley D (1993) Igneous and metamorphic rocks under the microscope. Chapman and Hall. 445ppGoogle Scholar
  46. Sun S, McDonough WF (1989) Chemical and isotopic-systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Eds.), Magmatism in the ocean basins, Geol. Soc. London Spec. Publ., 42:313–345Google Scholar
  47. Sundararajan N, Seshunarayana T (2014) Surface wave studies for shear wave velocity and bedrock depth estimation over basalts. Arab J Geosci 245–261Google Scholar
  48. Vergés J, Saura E, Casciello E, Fernàndez M, Villaseñor A, Jiménez-Munt I, García-Castellanos D (2011) Crustal-scale cross-section across the NW Zagros Belt: implications for the Arabian Margin reconstruction. In: Lacombe, O., Grasemann, B., Simpson, G. (Eds.), Geodynamic evolution of the Zagros: geological magazine, 148, pp. 739–761 (5–6)Google Scholar
  49. Whitechurch H, Omrani J, Agard P, Humbert F, Montigny R, Jolivet L (2013) Evidence for Paleocene–Eocene evolution of the foot of the Eurasian margin (Kermanshah ophiolite, SW Iran) from back-arc to arc: implications for regional geodynamics and obduction. Lithos 182–183:11–32CrossRefGoogle Scholar
  50. Wrobel-Daveau JC, Ringenbach JC, Tavakoli S, Ruiz G, Masse P, Frizonde Lamotte D (2010) Evidence for mantle exhumation along the Arabian margin in the Zagros (Kermanshah area, Iran). Arabian Journal of Geosciences. Springer Berlin/Heidelberg 499–513Google Scholar
  51. Zarei E, Ghasemi-Nejad E (2014) Sequence stratigraphy of the Gurpi Formation (Campanian–Paleocene) in southwest of Zagros, Iran, based on palynomorphs and foraminifera. Arabian Journal of GeosciencesGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2015

Authors and Affiliations

  1. 1.Department of Geology, Faculty of SciencesLorestan UniversityKhoramabadIran

Personalised recommendations