Advertisement

Arabian Journal of Geosciences

, Volume 8, Issue 9, pp 7359–7369 | Cite as

Local impact of dust storms around a suburban building in arid and semi-arid regions: numerical simulation examples from Dubai and Riyadh, Arabian Peninsula

  • D. M. DoronzoEmail author
  • E. A. Khalaf
  • P. Dellino
  • M. D. de Tullio
  • F. Dioguardi
  • L. Gurioli
  • D. Mele
  • G. Pascazio
  • R. Sulpizio
Original Paper

Abstract

Dust storms are common in arid and semi-arid regions, e.g., the Arabian Peninsula, where undisturbed wind can either weather the rocks and transport the grains for kilometers over the landscape or even overseas, or form dunes and ripples. We used a multiphase Eulerian–Lagrangian computational fluid dynamics model to investigate the impact of dust storms in the form of density current on a 10 × 10-m building. This numerical investigation particularly applies to the suburbs of metropolis, consisting of peripheral neighborhoods of meter-scale buildings that, as suggested by our results, can strongly affect the path of the storm before impacting the Downtown. Our results of flow-building interaction on pulsating (CASE 1) versus sustained (CASE 2, reference) and long-lived (CASE 3) storm show a strong amplification of flow dynamic pressure up to a factor of about 14 in streamwise direction and a heavy grain accumulation of about 800 kg around the building. With respect to reference sustained storm, the results show a more intense pressure amplification up to about 12 for slower (CASE 4) or coarser (CASE 5) storm, but a less intense amplification up to about 3 for more dilute storm (CASE 6) in transverse direction. Maximum grain accumulation around the building is of about 4,300 kg (55 % is on building front) for coarser storm, whereas high fog in the building rear occurs for more dilute storm. These results can be useful when assessing the impact of dust storms against buildings.

Keywords

Dust storms Arid and semi-arid regions Grain suspension Grain dispersal Arabian Peninsula Building impact Pyroclastic density currents 

Notes

Acknowledgments

We greatly thank reviewers and editor for suggesting improvements and in assisting this manuscript.

References

  1. Almeida MP, Andrade JS Jr, Herrmann HJ (2006) Aeolian transport layer. Phys Rev Lett 96:018001CrossRefGoogle Scholar
  2. Andreotti B, Fourrière A, Ould-Kaddour F, Murray B, Claudin P (2009) Giant aeolian dune size determined by the averaged depth of the atmospheric boundary layer. Nature 457:1120–1123CrossRefGoogle Scholar
  3. Ansys Fluent 15 2014 Theory and user’s guide. Ansys CorporationGoogle Scholar
  4. Bagnold R.A 1941 The physics of blown sand and desert dunes. MethuenGoogle Scholar
  5. Balachandar S, Eaton JK (2010) Turbulent dispersed multiphase flow. Annu Rev Fluid Mech 42:111–133CrossRefGoogle Scholar
  6. Blocken B, Carmeliet J (2007) Validation of CFD simulations of wind-driven rain on a low-rise building facade. Build Environ 42:2530–2548CrossRefGoogle Scholar
  7. Costa A, Folch A, Macedonio G, Giaccio B, Isaia R, Smith VC (2012) Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption. Geophys Res Lett 39:L10310CrossRefGoogle Scholar
  8. Crowe CT (2000) On models for turbulence modulation in fluid-particle flows. Int J Multiphase Flow 26:719–727CrossRefGoogle Scholar
  9. Dellino P, Isaia R, Veneruso M (2004) Turbulent boundary layer shear flows as an approximation of base surges at Campi Flegrei (Southern Italy). J Volcanol Geotherm Res 133:211–228CrossRefGoogle Scholar
  10. Dellino P, Buettner R, Dioguardi F, Doronzo DM, La Volpe L, Mele D, Sonder I, Sulpizio R, Zimanowski B (2010) Experimental evidence links volcanic particle characteristics to pyroclastic flow hazard. Earth Planet Sci Lett 295:314–320CrossRefGoogle Scholar
  11. Dioguardi F, Dellino P, Mele D (2014) Integration of a new shape-dependent particle-fluid drag coefficient law in the multiphase Eulerian–Lagrangian code MFIX-DEM. Powder Technol 260:68–77CrossRefGoogle Scholar
  12. Doronzo DM (2010) Could the Twin Towers collapse teach the interaction of dilute pyroclastic density currents with buildings? Nat Hazards 55:177–179Google Scholar
  13. Doronzo DM (2013) Aeromechanic analysis of pyroclastic density currents past a building. Bull Volcanol 75:684–689CrossRefGoogle Scholar
  14. Doronzo DM, Dellino P (2011) Interaction between pyroclastic density currents and buildings: numerical simulation and first experiments. Earth Planet Sci Lett 310:286–292CrossRefGoogle Scholar
  15. Doronzo DM, Valentine GA, Dellino P, de Tullio MD (2010) Numerical analysis of the effect of topography on deposition from dilute pyroclastic density currents. Earth Planet Sci Lett 300:164–173CrossRefGoogle Scholar
  16. Doronzo DM, de Tullio MD, Dellino P, Pascazio G (2011) Numerical simulation of pyroclastic density currents using locally refined Cartesian grids. Comput Fluids 44:56–67CrossRefGoogle Scholar
  17. Elghobashi S, Truesdell GC (1993) On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: turbulence modification. Phys Fluids 5:1790–1801CrossRefGoogle Scholar
  18. Engelstaedter S, Tegen I, Washington R (2006) North African dust emissions and transport. Earth Sci Rev 79:73–100CrossRefGoogle Scholar
  19. Evan AT, Foltz GR, Zhang D, Vimont DJ (2011) Influence of African dust on ocean–atmosphere variability in the tropical Atlantic. Nat Geosci 4:762–765CrossRefGoogle Scholar
  20. Folch A (2012) A review of tephra transport and dispersal models: evolution, current status, and future perspectives. J Volcanol Geotherm Res 235–236:96–115CrossRefGoogle Scholar
  21. Furbish D.J 1997 Fluid physics in geology. Oxford University PressGoogle Scholar
  22. Gillette DA, Walker TR (1977) Characteristics of airborne particles produced by wind erosion of sandy soil, high plains of West Texas. Soil Sci 123:97–110CrossRefGoogle Scholar
  23. Gillette DA, Blifford IH, Fryrear DW (1974) Influence of wind velocity on size distributions of aerosols generated by wind erosion of soils. J Geophys Res 79:4068–4075CrossRefGoogle Scholar
  24. Graham DI, Moyeed RA (2002) How many particles for my Lagrangian simulations? Powder Technol 125:179–186CrossRefGoogle Scholar
  25. Gurioli L, Zanella E, Pareschi MT, Lanza R (2007) Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): flow direction and deposition (part I). J Geophys Res 112:B05213Google Scholar
  26. Herman JR, Bhartia PK, Torres O, Hsu C, Seftor C, Celarier E (1997) Global distribution of UV-absorbing aerosols from Nimbus7/TOMS data. J Geophys Res 102:16911–16922CrossRefGoogle Scholar
  27. Kneller BC, Bennett SJ, McCaffrey WD (1999) Velocity structure, turbulence and fluid stresses in experimental gravity currents. J Geophys Res 104:5381–5391CrossRefGoogle Scholar
  28. Kok JF, Renno NO (2009) A comprehensive numerical model of steady state saltation. J Geophys Res 114:D17204CrossRefGoogle Scholar
  29. Kok JF, Parteli EJR, Michaels TI, Karam DB (2012) The physics of wind-blown sand and dust. Rep Prog Phys 75:1–72CrossRefGoogle Scholar
  30. Léon JF, Legrand M (2003) Mineral dust sources in the surroundings of the north Indian Ocean. Geophys Res Lett 30:1309CrossRefGoogle Scholar
  31. Li Y, Guo Y (2008) Numerical simulation of aeolian dusty sand transport in a marginal desert region at the early entrainment stage. Geomorphology 100:335–344CrossRefGoogle Scholar
  32. McTainsh G, Strong C (2007) The role of aeolian dust in ecosystems. Geomorphology 89:39–54CrossRefGoogle Scholar
  33. Meiburg E, Kneller BC (2010) Turbidity currents and their deposits. Annu Rev Fluid Mech 42:135–156CrossRefGoogle Scholar
  34. Mele D, Dellino P, Sulpizio R, Braia G (2011) A systematic investigation on the aerodynamics of ash particles. J Volcanol Geotherm Res 203:1–11CrossRefGoogle Scholar
  35. Middleton NJ (1986a) Dust storms in the Middle East. J Arid Environ 10:83–96Google Scholar
  36. Middleton NJ (1986b) A geography of dust storms in south-west Asia. J Climatol 6:183–196CrossRefGoogle Scholar
  37. Miller RL, Cakmur RV, Perlwitz J, Geogdzhayev IV, Ginoux P, Koch D, Kohfeld KE, Prigent C, Ruedy R, Schmidt GA, Tegen I (2006) Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model. J Geophys Res 111:D06208Google Scholar
  38. Morsi SA, Alexander AJ (1972) An investigation of particle trajectories in two-phase flow systems. J Fluid Mech 55:193–208CrossRefGoogle Scholar
  39. Natsagdorj L, Jugder D, Chung YS (2003) Analysis of dust storms observed in Mongolia during 1937–1999. Atmos Environ 37:1401–1411CrossRefGoogle Scholar
  40. Offer ZY, Goossens D (1995) Wind tunnel experiments and field measurements of aeolian dust deposition on conical hills. Geomorphology 14:43–56CrossRefGoogle Scholar
  41. Patankar S.V 1980 Numerical heat transfer and fluid flow. HemisphereGoogle Scholar
  42. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1002CrossRefGoogle Scholar
  43. Prosser G, Bentivenga M, Laurenzi MA, Caggianelli A, Dellino P, Doronzo DM (2008) Late Pliocene volcaniclastic products from Southern Apennines: distal witness of early explosive volcanism in the central Tyrrhenian Sea. Geol Mag 145:521–536CrossRefGoogle Scholar
  44. Shao Y, Dong CH (2006) A review on East Asian dust storm climate, modelling and monitoring. Global Planet Change 52:1–22CrossRefGoogle Scholar
  45. Shao Y, Raupach MR, Findlater PA (1993) Effect of saltation bombardment on the entrainment of dust by wind. J Geophys Res 98:12719–12726CrossRefGoogle Scholar
  46. Song Z (2004) A numerical simulation of dust storms in China. Environ Model Software 19:141–151CrossRefGoogle Scholar
  47. Sulpizio R, Dellino P, Doronzo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–65CrossRefGoogle Scholar
  48. Thomas DSG, Knight M, Wiggs GFS (2005) Remobilization of southern African desert dune systems by twenty-first century global warming. Nature 435:1218–1221CrossRefGoogle Scholar
  49. Torres O, Bhartia PK, Herman JR, Ahmad Z, Gleason J (1998) Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis. J Geophys Res 103:17099–17110CrossRefGoogle Scholar
  50. Valentine GA, Doronzo DM, Dellino P, de Tullio MD (2011) Effects of volcano profile on dilute pyroclastic density currents: numerical simulations. Geology 39:947–950CrossRefGoogle Scholar
  51. Versteeg H.K, Malalasekera W 2007 An introduction to computational fluid dynamics: the finite volume method. Pearson Prentice HallGoogle Scholar
  52. Zender CS, Bian H, Newman D (2003) Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology. J Geophys Res 108:4416–4435CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2014

Authors and Affiliations

  • D. M. Doronzo
    • 1
    Email author
  • E. A. Khalaf
    • 2
  • P. Dellino
    • 3
  • M. D. de Tullio
    • 1
  • F. Dioguardi
    • 1
  • L. Gurioli
    • 4
  • D. Mele
    • 3
  • G. Pascazio
    • 1
  • R. Sulpizio
    • 3
  1. 1.Dipartimento di Meccanica, Matematica & ManagementPolitecnico di BariBariItaly
  2. 2.Department of GeologyCairo UniversityGizaEgypt
  3. 3.Dipartimento di Scienze della Terra e GeoambientaliUniversità degli Studi di BariBariItaly
  4. 4.Laboratoire Magmas et VolcansUniversité Blaise PascalClermont-FerrandFrance

Personalised recommendations