Arabian Journal of Geosciences

, Volume 8, Issue 7, pp 4687–4702 | Cite as

Geochemical modeling to evaluate the mangrove forest water

  • Ram Pravesh Kumar
  • Rajesh Kumar Ranjan
  • Ramanathan AL
  • Sudhir Kumar Singh
  • Prashant K. Srivastava
Original Paper

Abstract

The knowledge about genetic origin of the chemical elements is important for the evaluation of hydro-geochemistry of aquatic ecosystem. In the present study, pre- and post-monsoon samples were collected to identify the role of rain and seawater in the hydro-geochemical processes. Geochemical model and multivariate statistical methods of data analysis were jointly used to define the variations and the genetic origin of chemical parameters of water in mangrove ecosystem. The geochemical model, WATEQ4F, was executed to compute the saturation indices of the minerals with respect to surface water. The interpretation of the saturation indices for minerals shows that the majority of samples fall in the category of under saturation state except for fluorite. An increase in the concentration of various nutrients, namely, nitrate and phosphate, was observed. Suitability of water was checked on the basis of chemical categorisation by Aquachem software. Grouping of waters on the Piper diagram suggested a common composition and origins. Further results showed that pre- and post-monsoon samples mainly consist of Na–Cl and Ca–Cl water type indicating a significant contribution of cations and anions from terrestrial and marine inputs in the mangrove ecosystem.

Keywords

Mangrove Geochemical modeling Multivariate statistical techniques Cluster analysis Land use and land cover Piper diagram 

Notes

Acknowledgments

The authors acknowledge the Ministry of Forest, Government of Tamil Nadu, for providing permission for sampling and School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India, for providing necessary facilities to carry out this work.

References

  1. Adamu M, Ahmad ZA, Hafizan J, Mohammad FR (2013) Surface water quality contamination source apportionment and physicochemical characterization at the upper section of the Jakara Basin, Nigeria. Arab J Geosci 6:4903–4915. doi: 10.1007/s12517-012-0731-2 CrossRefGoogle Scholar
  2. Alongi DM (1996) The dynamics of benthic nutrient pools and fluxes in tropical mangrove forests. J Mar Res 54(1):123–148CrossRefGoogle Scholar
  3. Alongi DM, Ramanathan AL, Kannan L, Tirendi F, Trott LA, Prasad MBK (2005) Influence of human-induced disturbance on benthic microbial metabolism in the Pichavaram mangroves, Vellar–Coleroon estuarine complex, India. Mar Biol 147(4):1033–1044. doi: 10.1007/s00227-005-1634-5 CrossRefGoogle Scholar
  4. Amadi UMP (1981) Ground-water chemistry and hydrochemical faciès distribution as related to flow, in the Mississippian Carbonates, Harrison County, Indiana. Ph.D. dissertation, Indiana University, BloomingtonGoogle Scholar
  5. Amadi UMP, Shaffer NR (1985) Low sulfate ground water and its relationship to the Gypsum—fluorite replacement in the karst terrains of southern Indiana, U.S.A. Karst Water Resources. P Ankara–Antalya Symp IAHS Publ. no. 1Ç1, 449-466Google Scholar
  6. APHAA (1985) Standard methods for the examination of water and wastewater. WPCF American Public Health Association, American Water Workers Association, Water Pollution Control FederationGoogle Scholar
  7. Appelo CAJ (1996) Geochemistry, groundwater and pollution. Taylor & Francis, The NetherlandsGoogle Scholar
  8. Ball JW, Nordstrom DK, Survey G (1991) User’s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. USGS Open-File Report 91-183Google Scholar
  9. Bava K, Seralathan P (1999) Interstitial water and hydrochemistry of a mangrove forest and adjoining water system, south west coast of India. Environ Geol 38(1):47–52CrossRefGoogle Scholar
  10. Blasco F, Caratini C, Chanda S, Thanikaimani A (1975) Main characteristics of Indian mangroves. Proc Int Symp Biol Manag Mangrove Hawai 1:71–87Google Scholar
  11. Bouillon SM, Frankignoulle F, Dehairs B, Velimirov A, Eiler G, Abril H, EtcheberBorges AV (2003) Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh, India) during pre-monsoon: the local impact of extensive mangrove forests. Glob Biogeochem Cycles 17(4):1114. doi: 10.1029/2002GB002026 CrossRefGoogle Scholar
  12. Constanza R, Arge RD, Groot RD, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, Neill RVO, Paruelo J, Raskin RG, Sutton P, Belt VDM (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  13. Das J, Das SN, Sahoo RK (1997) Semidiurnal variation of some physiochemical parameter in Mahanadi estuary, east coast of India. Indian J Mar Sci 26:323–326Google Scholar
  14. Deepika B, Avinash K, Jayappa KS (2014) Impact of estuarine processes and hydro-meteorological forcingon landform changes: a remote sensing, GIS and statistical approach. Arab J Geosci. doi: 10.1007/s12517-014-1264-7 Google Scholar
  15. Dennis RA, Colfer CP (2006) Impacts of land use and fire on the loss and degradation of lowland forest in 1983–2000 in East Kutai District, East Kalimantan, Indonesia. Singap J Trop Geogr 27(1):30–48CrossRefGoogle Scholar
  16. Dewidar KHM (2004) Detection of land use/land cover changes for the northern part of the Nile delta (Burullus region), Egypt. Int J Remote Sens 25(20):4079–4089CrossRefGoogle Scholar
  17. Dious SRJ, Kasinathan R (1994) Tolerance limits of two pulmonate snails Cassidula nucleus and Melampus ceylonicus from Pichavaram mangroves. Environ Ecol 12(4):845–849Google Scholar
  18. Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New York, p 824Google Scholar
  19. Foy C, Chaney R, White M (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29(1):511–566CrossRefGoogle Scholar
  20. Gorman D, Russell BD, Connell SD (2009) Land-to-sea connectivity: linking human-derived terrestrial subsidies to subtidal habitat change on open rocky coasts. Ecological applications. Ecol Soc Am 19(5):1114–1126Google Scholar
  21. Govindasamy C, Kannan L (1991) Rotifers of the Pichavaram mangroves hydrobiological approach. Mahasagar Bull Nat Inst Oceanogr 24(1):39–45Google Scholar
  22. Gowda G, Gupta TRC, Rajesh KM, Gowda H, Lingadhal C, Ramesh AM (2001) Seasonal distribution of phytoplankton in Nethravathi estuary, Mangalore. J Mar Biol Ass India 43:31–40Google Scholar
  23. Hamzaoui-Azaza F, Ketata M, Bouhlila R, Gueddari M, Riberio L (2011) Hydrogeochemical characteristics and assessment of drinking water quality in Zeuss–Koutine aquifer, southeastern Tunisia. Environ Monit Assess1-16Google Scholar
  24. Herold M, Scepan J, Clarke KC (2002) The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environ Plann A 34(8):1443–1458CrossRefGoogle Scholar
  25. Ibrahimi MK, Miyazaki T, Nishimura T, Imoto H (2013) Contribution of shallow groundwater rapid fluctuation to soil salinization under arid and semiarid climate. Arab J Geosci. doi: 10.1007/s12517-013-1084-1 Google Scholar
  26. Jagtap TG, Chavan VS, Untawale AG (1993) Mangrove ecosystem of India: a need for protection(synopsis). AMBIO 22(4):252–254Google Scholar
  27. Johnson R, Wichern D (2002) Applied multivariate statistical analysis. Prentice-Hall, LondonGoogle Scholar
  28. Kathiresan K (2000) A review of studies on Pichavaram mangrove, southeast India. Hydrobiologia 430(1):185–205CrossRefGoogle Scholar
  29. Kathiresan K (2002) Why are mangroves degrading? Curr Sci 83:1246–1249Google Scholar
  30. Kathiresan K, Ramesh M, Venkatesan V (1994) Forest structure and prawn seeds in Pichavaram mangrove. Environ Ecol 12(2):465–468Google Scholar
  31. Klekowski EJ, Lowenfeld RL, Hepler PK (1994) Mangrove genetics II. Outcrossing and lower spontaneousmutation rates in Puerto Rican Rhizophora. Int J Plant Sci 155:373–381CrossRefGoogle Scholar
  32. Krishnamurthy K, Jeyaseelan MJP (1983) The Pichavaram (India) mangrove ecosystem. Int J Ecol Environ Sci 9:79–85Google Scholar
  33. Kumar G, Ramanathan AL, Rajkumar K (2010) Textural characteristics of the surface sediments of a tropical mangrove ecosystem gulf of kachchh, Gujarat, India. Indian J Mar Sci 39:415–422Google Scholar
  34. Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation. Wiley, New YorkGoogle Scholar
  35. Mandel S, Shiftan ZL (1980) Groundwater resources investigation and development. Academic, New York, p 269Google Scholar
  36. Misra A, Murali MR, Vethamony P (2013) Assessment of the land use/land cover (LU/LC) and mangrove changes along the Mandovi–Zuari estuarine complex of Goa. India Arab J Geosci. doi: 10.1007/s12517-013-1220-y Google Scholar
  37. Mondal NC, Singh VP, Singh VS, Saxena VK (2010) Determining the interaction between groundwater and saline water through groundwater major ions chemistry. J Hydrol 388(1-2):100–111CrossRefGoogle Scholar
  38. Moreno J, Valente T, Moreno F, Fatela F, Guise L, Patinha C (2007) Occurrence of calcareous foraminifera and calcite–carbonate equilibrium conditions—a case study in Minho/Coura estuary (Northern Portugal). Hydrobiologia 587(1):177–184CrossRefGoogle Scholar
  39. Mujabar SP, Chandrasekar N (2013) Shoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GIS. Arab J Geosci 6:647–664. doi: 10.1007/s12517-011-0394-4 CrossRefGoogle Scholar
  40. Nagaraja P, Kumar MH, Yathirajan H, Prakash J (2003) Highly selective reaction of nitrate with brucine and 3-methyl-2- benzothiazolinone hydrazone hydrochloride for determination of nitrate in environmental samples. Anal Sci 19:961–963CrossRefGoogle Scholar
  41. Naidu LS, Rao GVVS, Rao GT, Mahesh J, Padalu G, Sarma VS, Prasad PR, Rao SM, Rao RBM (2013) An integrated approach to investigate saline water intrusion and to identify the salinity sources in the Central Godavari delta, Andhra Pradesh, India. Arab J Geosci 6:3709–3724. doi: 10.1007/s12517-012-0634-2 CrossRefGoogle Scholar
  42. Nair PVR, Gopinathan CP, Balachandran VK, Mathew KJ, Regunathan A, Rao DS, Murty AVS (1984) Ecology of mud banks: phytoplankton productivity I alleppey mudbank. Bull Cent Mar Fish Res Inst 31:28–34Google Scholar
  43. Noordwijk MV, Poulsen JG, Ericksen JP (2004) Quantifying off-site effects of land use change: filters, flows and fallacies agriculture. Ecos Environ 104:19–34CrossRefGoogle Scholar
  44. Panda UC, Sundaray SK, Rath P, Nayak BB, Bhatta D (2006) Application of factor and cluster analysis for characterization of river and estuarine water systems—a case study: Mahanadi River (India). J Hydrol 331(3-4):434–445CrossRefGoogle Scholar
  45. Park SC, Yun ST, Chae GT, Yoo IS, Shin KS, Heo CH et al (2005) Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. J Hydrol 313:182–194CrossRefGoogle Scholar
  46. Piper J (1997) Turner P, TurnerA (eds) (1995) Paleomagnetic applications in hydrocarbon exploration and production. Geol Soc Spec Publ London, pp 98–301. ISBN 1 897799 42 X. Geol Mag 134(01):121–142Google Scholar
  47. Prasad MBK, Ramanathan AL (2009) Organic matter characterization in a tropical estuarine-mangrove ecosystem of India: preliminary assessment by using stable isotopes and lignin phenols. Estuar Coast Shelf Sci 84(4):617–624CrossRefGoogle Scholar
  48. Prasad MBK, Ramanathan AL (2010) Characterization of phosphorus fractions in the sediments of a tropical intertidal mangrove ecosystem. Wet Ecol Manag 18(2):165–175. doi: 10.1007/s11273-009-9157-3 CrossRefGoogle Scholar
  49. Prasad MBK, Ramanathan AL, Alongi DM, Kannan L (2006) Seasonal variations and decadal trends in concentrations of dissolved inorganic nutrients in Pichavaram mangrove waters, southeast India. Bull Mar Sci 79(2):287–300Google Scholar
  50. Prasanna M, Chidambaram S, Shahul AH, Srinivasamoorthy K (2010) Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environ Monit Assess 168(1):63–90. doi: 10.1007/s10661-009-1092-5 CrossRefGoogle Scholar
  51. Presley BJ (1971) Appendix: techniques for analyzing interstitial water samples. Part I: determination of selected minor and major inorganic constituents. In Winterer EL et al (eds) Initial reports of the deep sea drilling project. US Govt Printing Office, Washington. vol VII, pp 1749–1755Google Scholar
  52. Ramanathan AL, Subramanian V, Vaidhyanathan P (1988) Chemical and sediment characteristics of the upper reaches of the Cauvery estuary, east coast of India. Indian J Mar Sci 17:114–120Google Scholar
  53. Ramanathan AL, Vaidhyanathan P, Subramanian V, Das BK (1993) Geochemistry of the Cauvery estuary, east coast of India. Estuar 16:459–474CrossRefGoogle Scholar
  54. Ramanathan AL, Vaidhyanathan P, Subramanian V, Das BK (1994) Nature and transport of solute load in the Cauvery River basin. India Wat Res 28(7):1585–1593CrossRefGoogle Scholar
  55. Ramanathan AL, Subramanian V, Ramesh R, Chidambaram S, James A (1999) Environmental geochemistry of the Pichavaram mangrove ecosystem (tropical), southeast coast of India. Environ Geol 37(3):223–233CrossRefGoogle Scholar
  56. Ranjan RK (2006) Impact of tsunami on the biogeochemical changes in sediments of Pichavaram mangroves, South east coast of India—post tsunami scenario. M.Phil, Jawaharlal Nehru University, New Delhi, in EnglishGoogle Scholar
  57. Ranjan R, Ramanathan AL, Singh G, Chidambaram S (2008a) Assessment of metal enrichments in tsunamigenic sediments of Pichavaram mangroves, Southeast coast of India. Environ Monit Assess 147(1):389–411. doi: 10.1007/s10661-007-0128-y CrossRefGoogle Scholar
  58. Ranjan R, Ramanathan AL, Singh G (2008b) Evaluation of geochemical impact of tsunami on Pichavaram mangrove ecosystem, Southeast coast of India. Environ Geol 55(3):687–697. doi: 10.1007/s00254-007-1019-9 CrossRefGoogle Scholar
  59. Ranjan RK, Ramanathan AL, Singh G (2008c) Evaluation of geochemical impact of tsunami on Pichavaram mangrove ecosystem, Southeast coast of India. Environ Geol 55(3):687–697CrossRefGoogle Scholar
  60. Ranjan RK, Ramanathan AL, Singh G, Chidambaram S (2008d) Assessment of metal enrichments in tsunamigenic sediments of Pichavaram mangroves, Southeast coast of India. Environ Monit Assess 147(1):389–411CrossRefGoogle Scholar
  61. Ranjan R, Ramanathan AL, Chauhan R, Singh G (2011) Phosphorus fractionation in sediments of the Pichavaram mangrove ecosystem, south-Eastern coast of India. Environ Earth Sci 62(8):1779–1787. doi: 10.1007/s12665-010-0659-3 CrossRefGoogle Scholar
  62. Selvam V (2003) Environmental classification of mangrove Etlands of mangrove Etlands of India. Curr Sci 84(6):757–765Google Scholar
  63. Senthilkumar S, Santhanam P, Perumal P (2002) Diversity of phytoplankton in Vellar estuary, south-east coast of India. The 5th Indian Fish Form Proc.publ AFSIB, Mangalore and AeA, Bhubanewar, India pp 245-248Google Scholar
  64. Seralathan P, Seetharamasamy A (1987) Geochemistry of modern deltaic sediments of the Cauvery river, east coast of India. Indian J Mar Sci 16:31–38Google Scholar
  65. Seralathan P, Srinivasalu S, Ramanathan AL, Rajamanickam GV, Nagendra R, Singarasubramanian SR, Mukesh MV, Manoharan K (2006) Post tsunami sediments characteristics of Tamilnadu coast. In: Rajamanickam GV (ed) 26th December 2004 Tsunami causes, effects remedial measures, pre and post tsunami disaster management, a geoscientific perspective. Department of Science and Technology report, New Delhi, pp 196–209Google Scholar
  66. Shalaby A, Tateishi R (2007) Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl Geogr 27(1):28–41CrossRefGoogle Scholar
  67. Sherif M, Mahmoudi EA, Garamoon H, Kacimov A, Akram S, Ebraheem A (2006) Geoeletrical and hydrogeochemical studies for delineating awater intrusion in the outlet of Wadi Ham. UA E nviron Geol 49:536–551CrossRefGoogle Scholar
  68. Simeonov V, Stratis J, Samara C, Zachariadis G, Voutsa D, Anthemidis A, Sofoniou M, Kouimtzis T (2003) Assessment of the surface water quality in Northern Greece. Water Res 37(17):4119–4124CrossRefGoogle Scholar
  69. Singh SK, Singh CK, Kumar KS, Gupta R, Mukherjee S (2009) Spatial-temporal monitoring of groundwater using multivariate statistical techniques in Bareilly district of Uttar Pradesh, India. J Hydrol Hydrmcs 57(1):45–54Google Scholar
  70. Singh SK, Singh CK, Mukherjee S (2010) Impact of land-use and land-cover change on groundwater quality in the Lower Shiwalik hills: a remote sensing and GIS based approach. Centl Europn J Geosci 2(2):124–131. doi: 10.2478/v10085-010-0003-x Google Scholar
  71. Singh P, Thakur JK, Kumar S, Singh UC (2011) Assessment of land use/land cover using geospatial techniques in a semi arid region of Madhya Pradesh, India. In Thakur JK, Singh SK, Ramanathan A, Prasad MBK, Gossel W, (ed) Springer and Capital publ, Heidelberg Germany. Geos Tech Manag Environ Res 152-163Google Scholar
  72. Singh SK, Srivastava PK, Pandey AC, Gautam SK (2013a) Integrated assessment of groundwater influenced by a confluence river system: concurrence with remote sensing and geochemical modelling. Water Resour Manag 27(12):4291–313CrossRefGoogle Scholar
  73. Singh SK, Srivastva PK, Pandey AC (2013b) Flouride contamination mapping of groundwater in northern India integrated with geochemical indicators and GIS. Water Sci Technol Water Supply. doi: 10.2166/ws.2013.160 Google Scholar
  74. Singh S, Srivastava P, Gupta M, Thakur J, Mukherjee S (2014) Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine. Environ Earth Sci 71(5):2245–55. doi: 10.1007/s12665-013-2628-0 CrossRefGoogle Scholar
  75. Solorzano L (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol Oceanogr 14:799–801CrossRefGoogle Scholar
  76. Srivastava P, Mukherjee S, Gupta M (2010) Impact of urbanization on land use/land cover change using remote sensing and GIS: a case study. Int J Ecol Econ Stat 18(S10):106–17Google Scholar
  77. Srivastava P, Mukherjee S, Gupta M, Singh S (2011) Characterizing monsoonal variation on water quality index of river Mahi in India using geographical information system. Water Qual Expo Health 2(3):193–203. doi: 10.1007/s12403-011-0038-7 CrossRefGoogle Scholar
  78. Srivastava PK, Mehta A, Gupta M, Singh SK, Islam T (2014) Assessing impact of climate change on Mundra mangrove forest ecosystem, Gulf of Kutch, Western coast of India: a synergistic evaluation using remote sensing. Theor Appl Climatol. doi: 10.1007/s00704-014-1206-z Google Scholar
  79. Subramanian A, Vannucci M (2004) Status of Indian mangroves: pollution status of the Pichavaram mangrove area, south-east coast of India. UNU Press, pp. 59–75Google Scholar
  80. Tandon HLS (1987) Phosphorous research and agricultural production in India. FDCO GOI, New DelhiGoogle Scholar
  81. Thakur JK, Thakur RK, Ramanathan A, Kumar M, Singh SK (2011) Arsenic contamination of groundwater in Nepal—an overview. Water 3(1):1–20CrossRefGoogle Scholar
  82. Vaidhyanathan P, Subramanian V, Ramanathan AL (1989) Transport and distribution of phosphorous by Indian rivers. Geol Soc India (Memoirs) 13:127–137Google Scholar
  83. Van Noordwijk M, Poulsen JG, Ericksen PJ (2004) Quantifying off-site effects of land use change: filters, flows and fallacies. Agric Ecosyst Environ 104(1):19–34CrossRefGoogle Scholar
  84. Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME (2005) Land cover classification and change analysis of the twin cities (Minnesota) Metropolitan area by multitemporal Landsat remote sensing. Remote Sens Environ 98(2-3):317–328CrossRefGoogle Scholar
  85. Zhang SR, Lu XX, Higgitt DL, Chen CTA, Sun HG, Han JT (2007) Water chemistry of the Zhujiang (Pearl River): natural processes and anthropogenic influences. J Geophys Res 112(F1), F01011. doi: 10.1029/2006JF000493 Google Scholar

Copyright information

© Saudi Society for Geosciences 2014

Authors and Affiliations

  • Ram Pravesh Kumar
    • 1
  • Rajesh Kumar Ranjan
    • 1
    • 2
  • Ramanathan AL
    • 1
  • Sudhir Kumar Singh
    • 3
  • Prashant K. Srivastava
    • 4
  1. 1.School of Environmental ScienceJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.School of Earth, Biological and Environmental SciencesCentral University of BiharPatnaIndia
  3. 3.K. Banerjee Centre of Atmospheric and Ocean Studies, IIDS, Nehru Science CentreUniversity of AllahabadAllahabadIndia
  4. 4.Water and Environment Management Research CentreDepartment of Civil Engineering University of BristolBristolUK

Personalised recommendations