Arabian Journal of Geosciences

, Volume 8, Issue 5, pp 2417–2432 | Cite as

Hydrochemical and bacteriological investigation in groundwater of the Tamlouka Plain, north-east of Algeria

  • Y. Gueroui
  • A. Maoui
  • A. S. Touati
Original Paper


This work aims to study the hydrochemical and bacteriological parameters of deep and shallow groundwater of Tamlouka Plain located in the eastern part of Algeria. The groundwater resources of this plain are used mainly for drinking, agricultural, and industrial purposes. Hydrochemical and water quality data obtained through sampling periods (November and December 2012) and analyses program indicate a highly mineralized water type. The amount of nitrates in these waters ranges from 22 to 110 mg/L. The interpretation of chemical data, based on both thermodynamic calculations and stability diagrams, suggests that the chemical evolution of groundwater is primarily controlled by water-rock interactions. The bacteriological analysis of 40 samples showed that 26 samples are contaminated. So for a better quantitative and qualitative assessment of groundwater resources, a regular control of water quality must be conducted in this area.


Groundwater Hydrochemistry Bacteriology Contamination Tamlouka Algeria 


  1. Ako A, Shimada J, Hosono T, Kagabu M, Ayuk A, Elambo Nkeng G, Eneke Takem Eyong G, Fouepe Takounjou A (2012) Spring water quality and usability in the Mount Cameroon area revealed by hydrogeochemistry. Environ Geochem Health 34:615–639CrossRefGoogle Scholar
  2. Amadi AN, Olasehinde PI, Yisa J, Okosun EA, Nwankwoala HO, Alkali YB (2012) Geostatistical assessment of groundwater quality from coastal aquifers of Eastern Niger delta, Nigeria. Geosciences 2(3):51–59Google Scholar
  3. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Rotterdam, p 649pCrossRefGoogle Scholar
  4. Bakalowicz M (1994) Water geochemistry: water quality and dynamics. In: Stanford J, Gibert J, Danielopol D (eds) Groundwater ecology. Academic Press, New York, pp 97–127CrossRefGoogle Scholar
  5. Banoeng-Yakubo B, Yidana SM, Anku Y, Akabzaa T, Asiedu D (2009) Water quality characterization in some birimian aquifers of the Birim Basin, Ghana. KSCE J Civ Eng 13(3):179–187CrossRefGoogle Scholar
  6. Ben Kabbour B, Zouhri L (2005) Hydrochemical and bacteriological features of the groundwater: southern border of the Rharb basin (Morocco). Hydrol Sci J 50(6):1149Google Scholar
  7. Bonton A, Rouleau A, Bouchard C, Rodriguez M (2010) Assessment of groundwater quality and its variations in the capture zone of a pumping well in an agricultural area. Agric Water Manag 97:824–834CrossRefGoogle Scholar
  8. Bouchaou L, Michelot JL, Qurtobi M, Zine N, Gaye CB, Aggarwal PK, Marah H, Zerouali A, Taleb H, Vengosh A (2009) Origin and residence time of groundwater in the Tadla basin (Morocco) using multiple isotopic and geochemical tools. J Hydrol 379(3–4):323–338CrossRefGoogle Scholar
  9. Clement A, Fritz B, Made B (1994) Thermodynamic and kinetic modelling of digenetic reactions in sedimentary basins. Description of the geochemical Code KINDISP. Fr Inst Pet 49:569–602Google Scholar
  10. Debye P, Hückel E (1923) The theory of electrolytes. I. Lowering of freezing point and related phenomena. Phys Z 24:185–206Google Scholar
  11. Djidel, Djorfi (1992) Contribution à l’étude hydrogéologique et hydrochimique de la plaine de Tamlouka. Mémoire d’ingénieur, Université d’AnnabaGoogle Scholar
  12. Edmunds WM, Smedley PL (2000) Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15(6):737–752CrossRefGoogle Scholar
  13. Fehdi C, Rouabhia A, Baali F, Boudoukha A (2009) The hydrogeochemical characterization of Morsott-El Aouinet aquifer, Northeastern Algeria. Environ Geol 58:1611–1620CrossRefGoogle Scholar
  14. Galego Fernandes P, Carreira P (2010) Bahir M (2010) Mass balance simulation and principal components analysis applied to groundwater resources: Essaouira basin (Morocco). Environ Earth Sci 59:1475–1484CrossRefGoogle Scholar
  15. Gramont M, Lombard JP (1966) Observations stratigraphiques et tectoniques dans la région du Djebel Djaffa. Publication du service de cartes géologiques, N.S., Alger, Algérie. Bull. No 35:27–49Google Scholar
  16. Hemila M, Kowalski W (2002) Synthèse géoélectrique appliquée à la caractérisation des contacts entre nappes de charriage et son apport hydrogéologique dans la Plaine de Tamlouka « Région de Guelma, Est Algérien ». Can Geotech J 39:725–737CrossRefGoogle Scholar
  17. Kim JH, Kim RH, Lee JH, Cheong TJ, Yum BW, Chang HW (2005) Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje. S Korea Hydrol Process 19(6):1261–1276CrossRefGoogle Scholar
  18. Mangin A (1975) Contribution à l'étude hydrodynamique des aquifères karstiques. Dijon, Université Dijon. Thesis: 21-124Google Scholar
  19. Maoui A, Kherici N, Derradji F (2010) Hydrochemistry of an Albian sandstone aquifer in a semi-arid region, Ain oussera, Algeria. Environ Earth Sci 60:689–701CrossRefGoogle Scholar
  20. Nosrati K (2012) Van Den Eeckhaut M (2012) Assessment of groundwater quality using multivariate statistical techniques in Hashtgerd Plain, Iran. Environ Earth Sci 65:331–344CrossRefGoogle Scholar
  21. Parkhurst DL, Apello CAJ (1999) User guide to PHREEQC (version 2): a computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Water Resources Investigations Report 99–4259, 312 pGoogle Scholar
  22. Plummer LN, Jones BF, Trusedall AH (1976) WATEQ-a Fortran IV version of WATEQ a computer program for calculating chemical equilibrium of natural waters. U.S Geol-Surv. Water Res, Washington DC:76:13–61 (Revised 1978, 1984)Google Scholar
  23. Rodier J (2009) L’Analyse de l’eau. 9e édition. Dunod. 1526 pGoogle Scholar
  24. Smiler R (2003) Diagramme: hydrochemistry software. Avignon, FranceGoogle Scholar
  25. Rouabhia A, Baali F, Fehdi C, Kherici N, Djabri L (2008) Hydrochemical and isotopic investigation of a sandstone aquifer groundwater in a semi-arid region, El Ma El Abiod, Algeria. Environ Geol 57:1699–1705CrossRefGoogle Scholar
  26. Rouabhia A, Baali F, Fehdi C (2010) Impact of agricultural activity and lithology on groundwater quality in the Merdja area, Tebessa, Algeria. Arab J Geosci 3:307–318CrossRefGoogle Scholar
  27. Thivya C, Chidambaram S, Thilagavathi R, Prasanna MV, Singaraja C, Nepolian M, Sundararajan M (2013) Identification of the geochemical processes in groundwater by factor analysis in hard rock aquifers of Madurai District. South India Arab J Geosci 1–11Google Scholar
  28. Vila JM (1977a.) Carte géologique de l’Algérie au 1/50 000 : feuille no 99, Sédrata (1ère éd.), avec notice explicative détaillée (levés de S. Guellal et J.M. Vila). Service de cartes Géologiques et Sonatrach, Division d’hydrocarbure, Direction des explorations, Alger, AlgérieGoogle Scholar
  29. Vila JM (1977b.) Carte géologique de l’Algérie au 1/50 000 : feuille no 123, Berriche (Jean Rigal) (1ère éd.), avec notice explicative détaillée (levés de S. Guellal et J.M. Vila). Service de cartes Géologiques et Sonatrach, Division d’hydrocarbure, Direction des explorations, Alger, AlgérieGoogle Scholar
  30. Vila JM (1980) La chaîne alpine d’Algérie orientale et des confins Algéro-Tunisiens. PhD of Science, University Pierre et Marie Curie, Paris VIGoogle Scholar
  31. Vôute C (1957) Notice explicative de la carte géologique au 1/50 000 d’Ain Babouche. No 122. Service de cartes Géologiques, Alger, AlgérieGoogle Scholar
  32. Vôute C (1967) Essai de synthèse de l’histoire géologique des environs d’Ain Fakroun, Ain Babouche et les régions limitrophes. Publication du service de cartes géologiques, N.S., Bull. no 36(3), Alger, AlgérieGoogle Scholar
  33. WHO (World Health Organization) (2004) Guidelines for drinking water-quality. Vol. 1. Recommendation, 3rd edn. World Health Organization, GenevaGoogle Scholar
  34. WHO (World Health Organization) (2011) Guidelines for drinking water-quality, 4th edn. World Health Organization, GenevaGoogle Scholar
  35. Yidana SM, Ophori D, Banoeng-Yakubob B (2008) A multivariate statistical analysis of surface water chemistry data—the Ankobra Basin. Ghana J Environ Manag 88:697–707CrossRefGoogle Scholar
  36. Zeng X, Rasmussen CD (2005) Multivariate statistical characterization of water quality in Lake Lanier, Georgia. USA J Environ Qual 34:1980–1991CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2014

Authors and Affiliations

  1. 1.Biology, Water and Environment Laboratory (LBEE)University 8 Mai 1945 GuelmaGuelmaAlgeria
  2. 2.Civil Engineering and Hydraulics Laboratory (LCGH)University 8 Mai 1945 GuelmaGuelmaAlgeria

Personalised recommendations