Arabian Journal of Geosciences

, Volume 8, Issue 2, pp 605–618 | Cite as

Liquefaction susceptibility study of sandy soils: effect of low plastic fines

  • Yassine Benghalia
  • Ali Bouafia
  • Jean Canou
  • Jean-Claude Dupla
Original Paper


The objective of this paper is to present a study on the mechanical behavior of three Algerian sands through cyclic triaxial tests with focus on the effect of the fines content. The particularity of this study is to keep the amount of the sand material matrix as a constant parameter for the entire range of fines content. This choice was considered due to the difficulty to determine experimentally the maximum and minimum void ratios of soil mixtures for fines content exceeding 15 %. The materials used in this investigation are originated from two different regions (Chlef and Boumerdes) in northern Algeria and are known for their higher seismicity levels. By varying the cyclic stress ratios and the proportion of fines contained naturally in the sand, a series of cyclic triaxial tests were carried out on reconstituted samples with a density index of 0.5 and an initial confining pressure of 100 kPa, on a servo-controlled dynamic machine with a sinusoidal frequency signal of 0.05 Hz and alternated symmetrical cycles. Comparing the clean and natural sands, the test results indicate that the presence of fines influences significantly the liquefaction resistance. Indeed, the fines content increases the liquefaction resistance for Zemmouri sand, decreases or stabilizes it for the Rass and Chlef sands, respectively. The effect of fines on the Chlef and Rass sands is in good agreement with the published literature, where the liquefaction resistance decreases to a threshold value and then increases with the increase of the fines content. This study can be used in soil classification and determination of liquefaction potential of seismic areas with smaller amounts of fines.


Sand Fines Liquefaction Triaxial test Cyclic 

List of symbols


Skempton’s coefficient (B = Δu c/Δp cell)


Coefficient of curvature (C c = (D 30)2/(D 10 × D 60))


Cyclic stress ratio (CSR = q m/2σc)


Coefficient of uniformity (C u = D 60/D 10)

D (in millimeter)


D10 (in millimeter)

Effective grain size

D30, D60 (in millimeter)

Grain size corresponding to 10 and 60 % finer, respectively

D50 (in millimeter)

Mean grain size


Global void ratio


Interfine void ratio


Maximum void ratio


Minimum void ratio

ES (in percent)

Sand equivalent


Intergranular void ratio

FC (in percent)

Fines content

FCth (in percent)

Threshold fines content

f (Hz)



Specific gravity of sand

H (in millimeter)



Density index (I D = (e maxe)/(e maxe min))

Ip (in percent)

Plasticity index (I p = w l − w p)


Number of cycles of loading


Number of cycles to liquefaction

p’ (in kilopascal)

Effective mean stress (p′ = (σ1 + 2σ3)/3)

q (in kilopascal)

Deviator stress (q = σ1 − σ3)

qm (in kilopascal)

Loading amplitude


Coefficient of correlation


Poorly graded sand

Δpcell (in kilopascal)

Cell pressure increment

Δu (in kilopascal)

Excess of pore water pressure

Δuc (in kilopascal)

Pore pressure increment

εa (in percent)

Axial strain

ρdmax (in gram per cubic centimeter)

Maximum density of the solid grains

ρdmin (in gram per cubic centimeter)

Minimum density of the solid grains

σc (in kilopascal)

Initial confining pressure

wl (in percent)

Liquid limit

wp (in percent)

Plastic limit


  1. AFNOR, Norme NF P 94-059 (2000) Détermination des masses volumiques minimale et maximale des sols non cohérents, Reconnaissance et essais. AFNORGoogle Scholar
  2. AFPS, Association Française du Génie Parasismique (2003) Le séisme du 21 mai 2003 en Algérie. Rapport préliminaire de la mission AFPSGoogle Scholar
  3. Amini F, Qi GZ (2000) Liquefaction testing of stratified silty sands. J Geotech Geoenviron Eng ASCE 126(3):208–217CrossRefGoogle Scholar
  4. Arab A, Belkhatir M (2012) Fines content and cyclic preloading effect on liquefaction potential of silty sand: a laboratory study. Acta Polytechnica Hungarica 9(4):47–64Google Scholar
  5. Argus DF, Gordon RG (1991) No‐net‐rotation model of current plate velocities incorporating plate motion model NUVEL‐1. Geophys Res Lett 18(11):2039–2042CrossRefGoogle Scholar
  6. ASTM D 4253–00 (2002) Standard test method for maximum index density and unit weight of soils using a vibratory table. Annual Book of ASTM Standards. American Society for Testing and Materials, West Conshohocken, pp 1–14Google Scholar
  7. ASTM D 4254–00 (2002) Standard test method for minimum index density and unit weight of soils and calculation of relative density. American Society for Testing and Materials, West Conshohocken, pp 1–9Google Scholar
  8. Bayat E, Bayat M (2012) Effect of grading characteristics on the undrained shear strength of sand: review with new evidences. Arab J Geosci. doi: 10.1007/s12517-012-0670-y Google Scholar
  9. Bayat M, Bayat E, Aminpour H, Salarpour A (2012) Shear strength and pore-water pressure characteristics of sandy soil mixed with plastic fine. Arab J Geosci. doi: 10.1007/s12517-012-0753-9 Google Scholar
  10. Belkhatir M, Arab A, Della N, Missoum H, Schanz T (2010) Influence of inter-granular void ratio on monotonic and cyclic undrained shear response of sandy soils. Comptes Rendus Mecanique 338:290–303CrossRefGoogle Scholar
  11. Benahmed N (2001) Comportement mécanique d’un sable sous cisaillement monotone et cyclique. PhD Dissertation, Ecole Nationale des Ponts et Chaussées, ParisGoogle Scholar
  12. Bouferra R, Shahrour I (2004) Influence of fines on the resistance to liquefaction of a clayey sand. Ground Improvement 8(1):1–5CrossRefGoogle Scholar
  13. Bouhadad Y, Nour A, Slimani A, Laouami N, Belhai D (2004) The Boumerdes (Algeria) earthquake of May 21, 2003 (Mw = 6.8): Ground deformation and intensity. J Seismol 8:497–506CrossRefGoogle Scholar
  14. Canou J (1989) Contribution à l’étude et à l’évaluation des propriétés de liquéfaction d’un sable. PhD Dissertation, Ecole Nationale des Ponts et Chaussées, ParisGoogle Scholar
  15. Chang NY, Yeh ST, Kaufman LP (1982) Liquefaction potential of clean and silty sands. In: Proceedings of the Third International Earthquake Microzonation Conference, Seattle, USA, 2:1017–1032Google Scholar
  16. Choobbasti AJ, Ghalandarzadeh A, Esmaeili A (2013) Experimental study of the grading characteristic effect on the liquefaction resistance of various graded sands and gravelly sands. Arab J Geosci. doi: 10.1007/s12517-013-0886-5 Google Scholar
  17. CRAAG, Centre de Recherche en Astronomie Astrophysique et Géophysique (1994) Les séismes en Algérie de 1365 à 1992. CRAAG Report, AlgiersGoogle Scholar
  18. Djafar Henni A, Arab A, Belkhatir M, Hamoudi SA, Khelafi H (2011) Undrained behavior of silty sand: effect of the overconsolidation ratio. Arab J Geosci. doi: 10.1007/s12517-011-0365-9 Google Scholar
  19. EERI, Earthquake Engineerin Research Institute (1983) El-Asnam, Algeria earthquake of October 10, 1980—a reconnaissance and engineering report. National Research Council Committee on Natural. Disasters, EERIGoogle Scholar
  20. Erten D, Maher MH (1995) Cyclic undrained behaviour of silty sand. Soil Dyn Earthq Eng 14:115–123CrossRefGoogle Scholar
  21. Finn WL, Ledbetter RH, Wu G (1994) Liquefaction on silty soils: design and analysis. In: Ground failures under seismic conditions, Geotechnical special publication no. 44, ASCE, pp 51–76Google Scholar
  22. Hamane M, Bensafi M, Nedjar D, Djellouli F, Ramdane K-E, Hamada M, Koganei K, Meguro K, Miyajima M, Saito T (2007) Dommages provoqués par le séisme de Boumerdes et recommandations pour la réduction du risque sismique. 7ème Colloque National AFPS 2007, Ecole Centrale Paris, Châtenay MalabryGoogle Scholar
  23. Ishihara K, Troncoso J, Kawase Y, Takahashi Y (1980) Cyclic strength characteristics of tailings materials. Soils Found 20(4):127–142CrossRefGoogle Scholar
  24. Ishihara K (1993) Liquefaction and flow failure during earthquakes. Geotechnique 43(3):351–415CrossRefGoogle Scholar
  25. Kenny TC (1977) Residual strengths of mineral mixtures. In: Proceedings of the 9th International Conference Soil Mech. and Found. Eng., Tokyo 1:155–160Google Scholar
  26. Koester JP (1994) The influence of fine type and content on cyclic strength. In: Ground failures under seismic condition, Geotechnical special publication no. 44, ASCE, pp 17–33Google Scholar
  27. Krim A, Zitouni Z, Arab A, Belkhatir M (2013) Identification of the behavior of sandy soil to static liquefaction and microtomography. Arab J Geosci 6:2211–2224CrossRefGoogle Scholar
  28. Lade PV, Duncan JM (1973) Cubical triaxial tests on cohesionless soil. Journal Soil Mechanics and Foundations Division, ASCE 99(SM10):793–812Google Scholar
  29. Lade PV, Yamamuro JA (1997) Effects of non-plastic fines on static liquefaction of sands. Canadian Geotech J 34:918–928CrossRefGoogle Scholar
  30. Meghraoui M, Morel JL, Andrieux J, Dahmani M (1996) Tectonique plio-quaternaire de la chaîne tello-rifaine et de la mer d’Alboran: Une zone complexe de convergence continent-continent. Bull Soc Géol France 167(1):141–157Google Scholar
  31. Missoum H, Belkhatir M, Bendani K (2011) Undrained shear strength response under monotonic loading of Chlef (Algeria) sandy soil. Arab J Geosci. doi: 10.1007/s12517-011-0387-3 Google Scholar
  32. Mitchell JK (1993) Fundamental of Soil Behaviour, 2nd edn. John Wiley–Interscience, New YorkGoogle Scholar
  33. Montenat C, Barrier P, Ott d’Estevou P, Hibsch C (2007) Seismites: an attempt at critical analysis and classification. Sediment Geol 196:5–30CrossRefGoogle Scholar
  34. Naeini SA, Baziar MH (2004) Effect of fines content on steady-state strength of mixed and layered samples of a sand. Soil Dynam Earth Eng 24:181–187CrossRefGoogle Scholar
  35. Perlea VG, Koester JP, Prakash, S (1999) How liquefiable are cohesive soils? In: Proceedings of the Second International Conference on Earthquake Geotechnical Engineering, Lisboa, Portugal, pp 611–618Google Scholar
  36. Polito CP (1999) The Effect of non-plastic and plastic fines on the liquefaction of sandy soils. PhD Dissertation, Virgina Polytechnic Institute and State University, Virginia, USAGoogle Scholar
  37. Seed HB, Harder LF (1990) SPT-based analysis of cyclic pore pressure generation and undrained residual strength. H. Bolton Seed Memorial Symposium, Berkeley, BiTech Publishers Ltd., Vancouver 2:351–76Google Scholar
  38. Skempton AW (1954) The pore-pressure coefficients A and B. Geotechnique 4(4):143–147CrossRefGoogle Scholar
  39. Thevanayagam S (1998) Effect of fines and confining stress on undrained shear strength of silty sands. J Geotech Geoenviron Eng ASCE 124(6):479–491CrossRefGoogle Scholar
  40. Thevanayagam S, Martin GR (2002) Liquefaction in silty soils - screening and remediation issues. J Soil Dyn Earthq Eng 22:1035–1042Google Scholar
  41. Troncoso JH, Verdugo R (1985) Silt content and dynamic behaviour of tailing sands. In: Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, pp 1311–1314Google Scholar
  42. USGS, United States Geological Survey’s (2003) Earthquake Hazards Program. Earthquake report on northern AlgeriaGoogle Scholar
  43. Vaid YP (1994) Liquefaction of silty soils. In: Ground failure under seismic condition, Geotechnical special publication no. 44, ASCE, pp 1–16Google Scholar
  44. Xenaki VC, Athanasopoulos GA (2003) Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effect of fines. Soil Dyn Earthq Eng 23:183–194Google Scholar
  45. Zlatovic S, Ishihara K (1997) Normalised behaviour of very loose non-plastic soils: effects of fabric. Soils Found 37(4):47–56CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2014

Authors and Affiliations

  • Yassine Benghalia
    • 1
  • Ali Bouafia
    • 2
  • Jean Canou
    • 3
  • Jean-Claude Dupla
    • 3
  1. 1.Laboratory of Materials Sciences & EnvironmentHassiba Benbouali University of ChlefChlefAlgeria
  2. 2.Civil Engineering DepartmentSaâd Dahlab University of BlidaBlidaAlgeria
  3. 3.Navier Laboratory, CERMES, Ecole des Ponts ParisTechMarne-la-Vallée Cedex 2France

Personalised recommendations