Arabian Journal of Geosciences

, Volume 7, Issue 11, pp 4641–4664 | Cite as

Tchabal Gangdaba massif in the Cameroon Volcanic Line: a bimodal association

  • Zénon Itiga
  • Jacques-Marie Bardintzeff
  • Pierre Wotchoko
  • Pierre Wandji
  • Hervé Bellon
Original Paper


Tchabal Gangdaba (TG) volcanic massif, which is a part of the continental sector of the Cameroon Volcanic Line (CVL), is dated between 34.4 and 25.1 Ma. It displays mafic lavas (picrobasalt and basanite, 41–43 wt % SiO2) and felsic lavas (rhyolite, 68–73 wt % SiO2). The lack of intermediate rocks evidences a pronounced Daly gap between 43 and 68 wt % SiO2, which corresponds to an important time span of 3.4 Ma. It is interpreted as due to extensive fractional crystallization under peculiar thermodynamical conditions. Felsic lavas yield strong negative anomalies in Ba, Sr and Eu (0.1 < Eu/Eu* < 0.3) reflecting alkali feldspar and plagioclase fractionation and in Ti reflecting titanomagnetite and ilmenite fractionation. All TG rocks are enriched in LREE and mildly fractionated, which suggests enriched mantle sources. Sr initial isotopic ratios ranging from 0.7033 to 0.7059, εNd from +2.89 to +4.64 and Pb isotopic ratios of 18.988 < 206Pb/204Pb < 19.998, 15.592 < 207Pb/204Pb < 15.673 and 38.948 < 208Pb/204Pb < 39.648 are typical of an enriched mantle source close to HIMU and FOZO. A discrete Sr crustal leaching is evidenced.


Cameroon Volcanic Line Tchabal Gangdaba Fractional crystallization Daly gap Magmatic bimodality 



The authors are grateful to the French Ministry of Foreign affairs which, by the means of the SCAC of Yaoundé, supported fees of chemical analyses and the financial support of one of the field work on the TG, through the Project CORUS-CAMPUS entitled “L’évolution volcano-structurale du Crétacé à l’Actuel de la Ligne du Cameroun” co-directed by P.W. and J.M.B. Thanks also to D. Demaiffe of the Laboratoire de Géochimie Isotopique, Université Libre de Bruxelles, Belgium, who has conducted the measure of isotopic data. L. Daumas has drawn figures. B. Bonin, G. Delpech, J.P. Liegeois, A.R. McBirney, B. Platevoet are thanked for useful remarks. Careful reviews by two anonymous reviewers have greatly helped to improve the manuscript.


  1. Aït-Hamou F, Dautria JM, Cantagrel JM, Dostal J, Briqueu L (2000) Nouvelles données géochronologiques et isotopiques sur le volcanisme cénozoïque de l’Ahaggar (Sahara algérien): des arguments en faveur de l’existence d’un panache. C R Acad Sci Paris, Sci de la terre et des planètes 330(12):829–836Google Scholar
  2. Anderson AT (1968) The oxygen fugacity of alkaline basalt and related magmas, Tristan da Cunha. Am J Sci 266:704–727CrossRefGoogle Scholar
  3. Ballentine CJ, Lee DC, Halliday AN (1997) Hafnium isotopic studies of the Cameroon line and new HIMU paradoxes. Chem Geol 139(1–4):111–124CrossRefGoogle Scholar
  4. Bardintzeff JM, Bonin B (1987) The amphibole effect: a possible mechanism for triggering explosive eruptions. J Volcanol Geotherm Res 33:255–262CrossRefGoogle Scholar
  5. Bardintzeff JM, Leyrit H, Guillou H, Guille G, Bonin B, Giret A, Brousse R (1994) Transition between tholeiitic and alkali basalts: petrographical and geochemical evidence from Fangataufa, Pacific Ocean, and Kerguelen, Indian Ocean. Geochem J 28:489–515CrossRefGoogle Scholar
  6. Bardintzeff JM, Deniel C, Guillou H, Platevoet B, Télouk P, Oun KM (2012) Miocene to recent alkaline volcanism between Al Haruj and Waw an Namous (southern Libya). Int J Earth Sci 101(4):1047–1063CrossRefGoogle Scholar
  7. Bellon H, Quoc Buü N, Chaumont J, Philippet JC (1981) Implantation ionique d’argon dans une cible support: application au traçage isotopique de l’argon contenu dans les minéraux et les roches. C R Acad Sci Paris 292:977–980Google Scholar
  8. Bonin B (2004) Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78:1–24CrossRefGoogle Scholar
  9. Bonin B, Giret A (1990) Plutonic alkaline series: Daly gap and intermediate compositions for liquids filling up crustal magma chambers. Schweizerische Mineral Petrogr Mitteilungen 70:175–187Google Scholar
  10. Bonin B, Bardintzeff JM, Giret A (1994) The distribution of felsic rocks within the alkaline igneous centres. Mém Soc Géol France 166:9–24Google Scholar
  11. Bonnefoi CC, Provost A, Albarède F (1995) The ‘Daly gap’ as a magmatic catastrophe. Nature 378:270–272CrossRefGoogle Scholar
  12. Bunsen RW (1851) Uber die prozesse der vulkanischen Gesteinsbildungen Islands. Annal Physik Chemie, Leipzig 83:197–272CrossRefGoogle Scholar
  13. Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of reference materials BR, DR-N, UB-N, AN-G and GH. Geostandard Newsletter. J Geostandards Geoanalysis 25(2–3):187–198Google Scholar
  14. Charlier B, Namur O, Toplis MJ, Schiano P, Cluzel N, Higgins MD, Vander Auwera J (2011) Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap. Geology 39(10):907–910CrossRefGoogle Scholar
  15. Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George Allen and Unwin, London, BostonCrossRefGoogle Scholar
  16. Cox KG, Hawkesworth CJ (1985) Geochemical stratigraphy of the Deccan Traps at Mahabaleshwar, Western Ghats, India, with implications for open system magmatic processes. J Petrol 26(2):355–377Google Scholar
  17. Daly RA (1925) The geology of Ascension Island. Am Acad Arts Sci Proc 60:1–80CrossRefGoogle Scholar
  18. Daly RA (1933) Igneous rocks and the depth of the earth. McGraw Hill, New YorkGoogle Scholar
  19. Déruelle B, Moreau C, Nkonguin Nsifa E (1983) La dernière éruption du mont Cameroun (1982) dans son contexte structural. Rev Géogr Cameroun 4(2):39–46Google Scholar
  20. Déruelle B, Moreau C, Nkoumbou C, Kambou R, Lissom J, Njonfang E, Ghogomu RT, Nono A (1991) The Cameroon line: a review. In: Kampunzu AB, Lubala RT (Eds.) Magmatism in extensional structural settings-The Phanerozoic African plate, Springer-Verlag, pp. 274–327Google Scholar
  21. Déruelle B, Ngounouno I, Demaiffe D (2007) The ‘Cameroon Hot Line’ (CHL): a unique example of active alkaline intraplate structure in both oceanic and continental lithospheres. Compt Rendus Geosci 339:589–600CrossRefGoogle Scholar
  22. Dunlop H (1983) Strontium isotope geochemistry and potassium-argon studies on volcanic rocks from the Cameroon line, West Africa. Ph D Thesis, University Edinburgh, p 347Google Scholar
  23. Ferla P, Meli C (2006) Evidence of magma mixing in the ‘Daly Gap’ of alkaline suites: a case study from the enclaves of Pantelleria (Italy). J Petrol 47(8):1467–1507CrossRefGoogle Scholar
  24. Fitton J (1987) The Cameroon line, West Africa: a comparison between oceanic and continental alkaline volcanism. In: Fitton JG, Upton BGJ (eds) Alkaline Igneous Rocks. Geol Soc Sp Publication 30:273–291CrossRefGoogle Scholar
  25. Fitton JG, Dunlop HM (1985) The Cameroon Line, West Africa and its bearing on the origin of oceanic and continental alkali basalt. Earth Planet Sci Lett 72:23–38CrossRefGoogle Scholar
  26. Fosso J, Ménard JJ, Bardintzeff JM, Wandji P, Tchoua FM, Bellon H (2005) Les laves du mont Bangou: une première manifestation volcanique éocène, à affinité transitionnelle, de la Ligne du Cameroun. C R Géosci 337:315–325CrossRefGoogle Scholar
  27. Francalanci L, Varekamp JC, Vougioukalakis GE, Innocenti F, Manetti P (2007) Is there a compositional gap at Nisyros volcano? A comment on: magma generation at the easternmost section of the Hellenic arc: Hf, Nd, Pb and Sr isotope geochemistry of Nisyros and Yali volcanies (Greece) [Lithos 83 (2005) 29–46]. Lithos 95(3–4):458–461CrossRefGoogle Scholar
  28. Franz G, Steiner G, Volker F, Pudlo D, Hammerschmidt K (1999) Plume related alkaline magmatism in central Africa - the Meidob Hills (W Sudan). Chem Geol 157:27–47CrossRefGoogle Scholar
  29. Gautier I, Weis D, Mennessier JP, Vidal P, Giret A, Loubet M (1990) Petrology and geochemistry of the Kerguelen Archipelago basalts (South Indian Ocean): evolution of the mantle sources from ridge to intraplate position. Earth Planet Sci Lett 100:59–76CrossRefGoogle Scholar
  30. Girod M, Dautria JM, Ball E, Soba D (1984) Estimation de la profondeur du Moho, sous le massif volcanique de l’Adamaoua (Cameroun), à partir de l’étude d’enclaves de lherzolite. C R Acad Sci Paris 298(II,16):699–704Google Scholar
  31. Gouhier J, Nouguier D, Nouguier J (1974) Contribution à l'étude volcanologique du Cameroun (Ligne du Cameroun-Adamaoua). Annales Faculté des Sciences, Université YaoundéGoogle Scholar
  32. Halliday AN, Dickin AP, Fallick AE, Fitton JG (1988) Mantle dynamics: a Nd, Sr, Pb and O isotopic study of the Cameroon line volcanism chain. J Petrol 29:181–211CrossRefGoogle Scholar
  33. Halliday AN, Davidson JP, Holden P, Dewolf C, Lee DC, Fitton JG (1990) Trace - element fractionation in plumes and the origin of HIMU mantle beneath the Cameroon Line. Nature 347(6293):523–528CrossRefGoogle Scholar
  34. Hart SR (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309:753–757CrossRefGoogle Scholar
  35. Hart SR (1988) Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet Sci Lett 90:273–296CrossRefGoogle Scholar
  36. Itiga Z (2007) Le magmatisme de l’ensemble du Tchabal Gangdaba-Hosséré Mana: le plutonisme néoprotérozoïque, le volcanisme cénozoïque et le magmatisme anorogénique du Ngaou Boh (Provinces de l’Adamaoua et du Nord Cameroun). Pétrologie, Minéralogie, Géochimie et Géochronologie. Ph D Thesis, Université Yaoundé I, 362 pGoogle Scholar
  37. Itiga Z, Chakam Tagheu PJ, Wotchoko P, Wandji P, Bardintzeff JM, Bellon H (2004a) La ligne du Cameroun: Volcanologie et géochronologie de trois régions (mont Manengouba, plaine du Noun et Tchabal Gangdaba). Géochronique 91:13–16Google Scholar
  38. Itiga Z, Wandji P, Bardintzeff JM (2004b) Volcanology, petrology and geochemistry of Tchabal Gangdaba massif (North Cameroon) in the extensional structure of the Cameroon Volcanic Line (Central Africa). International Conference on the East African Rift System: Development, Evolution and Resources. International Commission for Earth Sciences in Africa (ICESA), Addis Ababa, Ethiopia, June 20–24, 2004, 5 pGoogle Scholar
  39. Itiga Z, Wandji P, Bardintzeff JM, Bellon H (2006) Discovery of an anorogenic ring complex in the far North Adamawa (Cameroon Line): the plutonic-volcanic Mount Ngaou Boh. Garavolcan, 300th Anniversary Volcano International Conference commemorating the 1706 Arenas Negras Eruption, Garachico, Tenerife, Canary Islands, May 22–27, 2006Google Scholar
  40. Kagou Dongmo A, Wandji P, Pouclet A, Vicat JP, Cheilletz A, Nkouathio DG, Alexandrov P, Tchoua FM (2001) Evolution volcanologique du mont Manengouba (Ligne du Cameroun), nouvelles données pétrographiques, géochimiques et géochronologiques. C R Acad Sci Paris IIA 333:155–162CrossRefGoogle Scholar
  41. Kagou Dongmo A, Nkouathio D, Pouclet A, Bardintzeff JM, Wandji P, Nono A, Guillou H (2010) The discovery of late Quaternary basalt on Mount Bambouto: implications for recent widespread volcanic activity in the southern Cameroon Line. J Afr Earth Sci 57(1–2):96–108CrossRefGoogle Scholar
  42. Kamgang P (2003) Pétrologie et géochimie d’un secteur clé de la ligne du Cameroun, les monts Bamenda: Implications sur la genèse et l’évolution des magmas. Thèse doct. État, Université Yaoundé I, 373 p + annexesGoogle Scholar
  43. Kamgang P, Njonfang E, Chazot G, Tchoua F (2007) Géochimie et géochronologie des laves felsiques des monts Bamenda (ligne volcanique du Cameroun). Compt Rendus Geosci 339:659–666CrossRefGoogle Scholar
  44. Kamgang P, Chazot G, Njonfang E, Tchoua F (2008) Geochemistry and geochronology of mafic rocks from Bamenda Mountains (Cameroon): source composition and crustal contamination along the Cameroon Volcanic Line. Compt Rendus Geosci 340:850–857CrossRefGoogle Scholar
  45. Kamgang P, Njonfang E, Nono A, Gountie Dedzo M, Tchoua FM (2010) Petrogenesis of a silicic magma system: geochemical evidence from Bamenda Mountains, NW Cameroon, Cameroon Volcanic Line. J Afr Earth Sci 58(2):285–304CrossRefGoogle Scholar
  46. Lakhssassi M, Guy B, Touboul E, Cottin JY (2010) Bimodal distribution of the solid products in a magmatic chamber: modelling by fractional crystallization and coupling of the chemical exchanges with the differential melt/solid transport. Compt Rendus Geosci 342(9):701–709CrossRefGoogle Scholar
  47. Le Maitre RW (editor), Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous rocks: a classification and glossary of terms, recommendations of the International Union of Geological Sciences, Subcommission of the Systematics of Igneous Rocks. Cambridge University Press, UKGoogle Scholar
  48. Macdonald R, Davies GR, Bliss CM, Leat PT, Bailey DK, Smith RL (1987) Geochemistry of high-silica peralkaline rhyolites, Neivasha, Kenya Rift Valley. J Petrol 28(6):979–1008CrossRefGoogle Scholar
  49. Mahood GA, Drake RE (1982) K-Ar dating young rhyolitic rocks: a case study of Sierra la Primavera, Mexico. Geol Soc Amer Bull 93:1232–1241CrossRefGoogle Scholar
  50. Marzoli A, Renne PR, Piccirillo EM, Francesca C, Bellieni G, Melfi AJ, Nyobe JB, N’ni J (1999) Silicic magmas from the continental Cameroon Volcanic Line (Oku, Bambouto and Ngaoundere): 40Ar-39Ar dates, petrology, Sr-Nd-O isotopes and their petrogenetic significance. Contrib Mineral Petrol 135:133–150CrossRefGoogle Scholar
  51. Marzoli A, Piccirillo EM, Renne PR, Bellieni G, Iacumin M, Nyobe JB, Tongwa AT (2000) The Cameroon Volcanic Line revisited: petrogenesis of continental basaltic magmas from lithospheric and asthenospheric mantle sources. J Petrol 41(1):87–109CrossRefGoogle Scholar
  52. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  53. Ménard JJ, Wandji P, Déruelle B, Ezangono Tolo JM (1998) Le volcan de Djinga (Adamaoua-Cameroun): Géologie et Pétrographie. Géosciences au Cameroun, collect. GEOCAM, 1/1998, Presse Université Yaoundé I, 185–190Google Scholar
  54. Middlemost EAK (1989) Iron oxidation ratios, norms and the classification of volcanic rocks. Chem Geol 77:19–26CrossRefGoogle Scholar
  55. Milelli L, Fourel L, Jaupart C (2012) A lithospheric instability origin for the Cameroon Volcanic Line. Earth Planet Sci Lett 335–336:80–87CrossRefGoogle Scholar
  56. Moundi A, Wandji P, Bardintzeff JM, Ménard JJ, Okomo Atouba LC, Mouncherou OF, Reusser E, Bellon H, Tchoua FM (2007) Les basaltes éocènes à affinité transitionnelle du plateau Bamoun, témoins d’un réservoir mantellique enrichi sous la Ligne Volcanique du Cameroun. Compt Rendus Geosci 339:396–406CrossRefGoogle Scholar
  57. Nana R (1991) Contribution à l’étude volcanologique et pétrologique des lacs de la région de Wum (Province du Nord-Ouest, Cameroun). Thèse doct. 3e cycle, Université Yaoundé, 155 pGoogle Scholar
  58. Ngounouno I, Déruelle B, Demaiffe D (2000) Petrology of the bimodal cenozoic volcanism of the Kapsiki plateau (northernmost Cameroon, central Africa). J Volcanol Geotherm Res 102:21–44CrossRefGoogle Scholar
  59. Nimis P, Ulmer P (1998) Clinoyroxene geobarometry of magmatic rocks. Part 1: an expanded structural geobarometry for anhydrous and hydrous, basic and ultrabasic systems. Contrib Mineral Petrol 133:122–135 (Erratum, pp 314–327)Google Scholar
  60. Njanko T, Nédélec A, Affaton P (2006) Synkinematic high-K calc-alkaline plutons associated with the Pan-African Central Cameroon shear zone (W-Tibati area): petrology and geodynamic significance. J Afr Earth Sci 44:494–510CrossRefGoogle Scholar
  61. Nkouandou OF, Ngounouno I, Déruelle B, Ohnenstetter D, Montigny R, Demaiffe D (2008) Petrology of the Mio-Pliocene volcanism to the North and East of Ngaoundéré (Adamawa, Cameroon). Compt Rendus Geosci 340:28–37CrossRefGoogle Scholar
  62. Nkouathio DG, Ménard JJ, Wandji P, Bardintzeff JM (2002) The Tombel graben (West Cameroon): a recent monogenetic volcanic field of the Cameroon Line. J Afr Earth Sci 35:285–300CrossRefGoogle Scholar
  63. Nkouathio DG, Kagou Dongmo A, Bardintzeff JM, Wandji P, Bellon H, Pouclet A (2008) Evolution of volcanism in graben and horst structures along the Cenozoic Cameroon Line (Africa): implications for tectonic evolution and mantle source composition. Mineral Petrol 94(3–4):287–303CrossRefGoogle Scholar
  64. Nni J, Bonin B, Brousse R (1986) Migration de l’activité magmatique de la ligne du Cameroun: réactivation de segments de failles anciennes du socle panafricain. C R Acad Sci Paris II 302(7):453–456Google Scholar
  65. Nono A, Déruelle B, Demaiffe D, Kambou R (1994) Tchabal Nganha volcano in Adamawa (Cameroon): petrology of continental alkaline lava series. J Volcanol Geotherm Res 60:147–178CrossRefGoogle Scholar
  66. Nono A, Njonfang E, Kagou Dongmo A, Nkouathio DG, Tchoua FM (2004) Pyroclastites deposits of the Bambouto volcano (Cameroon Line, central Africa): evidence of an initial strombolian phase. J Afr Earth Sci 39:409–414CrossRefGoogle Scholar
  67. Nzolang C (2005) Crustal evolution of the Preacambrian basement in west Cameroon: inference from geochemistry, Sr-Nd and experimental investigation of some granitoids and metamorphic rocks. Ph.D. Thesis. Graduate School of Science and Technology, Niigata University, Japan, 207 pGoogle Scholar
  68. Oustrière P (1984) Etude géologique et géochimique du bassin lacustre d’Anloua (Cameroun). Application à la compréhension de la genèse de la vivianite. Thèse doctorat d’État, Université Orléans, 344 pGoogle Scholar
  69. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25(4):956–983CrossRefGoogle Scholar
  70. Peccerillo A, Donati C, Santo AP, Orlando A, Yirgu G, Ayalew D (2007) Petrogenesis of silicic peralkaline rocks in the Ethiopian rift: geochemical evidence and volcanological implications. J Afr Earth Sci 48(2–3):161–173CrossRefGoogle Scholar
  71. Pik R, Deniel C, Coulon C, Yirgu G, Marty B (1999) Isotopic and trace element signatures of Ethiopian flood basalts: evidence for plume-lithosphere interactions. Geochim Cosmochim Acta 63(15):2263–2279CrossRefGoogle Scholar
  72. Poudjom Djomani YH, Nnange JM, Diament M, Ebinger CJ, Fairhead JD (1995) Effective elastic thickness and crustal variations in West central Africa inferred from gravity data. J Geophys Res 100(B11):22047–22070CrossRefGoogle Scholar
  73. Putirka KD (2008) Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry. Mineral Soc Amer 69(1):61–120Google Scholar
  74. Rankenburg K, Lassiter JC, Brey G (2004) Origin of megacrysts in volcanic rocks of the Cameroon volcanic chain-constraints on magma genesis and crustal contamination. Contrib Mineral Petrol 147(2):129–144CrossRefGoogle Scholar
  75. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289CrossRefGoogle Scholar
  76. Shand SJ (1943) Eruptive rocks, their genesis, composition, classification, and their relations to ore-deposits, 2nd edn. John Wiley and Sons, New YorkGoogle Scholar
  77. Shellnutt JG, Zhou MF, Zellmer GF (2009) The role of Fe–Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap: an example from the Permian Baima igneous complex, SW China. Chemical Geol 259(3–4):204–217CrossRefGoogle Scholar
  78. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet Sci Lett 36:356–362Google Scholar
  79. Stracke A, Hofman AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosyst 6, 5:Q05007, doi: 10.1029/2004GC000824
  80. Tamen J (1998) Contribution à l’étude géologique du plateau Kapsiki (Extrême-Nord, Cameroun: volcanologie, pétrologie et géochimie. Thèse doct. 3e cycle, Université Yaoundé I, 127 pGoogle Scholar
  81. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publication, OxfordGoogle Scholar
  82. Tchameni R, Pouclet A, Penaye J, Ganwa AA, Toteu SF (2006) Petrography and geochemistry of the Ngaoundéré Pan-African granitoids in Central North Cameroon: implications for their sources and geological setting. J Afr Earth Sci 44:511–529CrossRefGoogle Scholar
  83. Tchokona Seuwui D (2010) Volcanisme paléogène à récent du secteur du massif de Mbépit (Plaine du Noun): pétrologie, minéralogie, géochimie isotopique, géochronologie et approche environnementale. Ph D Thesis, Université Yaoundé IGoogle Scholar
  84. Temdjim R (1986) Le volcanisme de la région de Ngaoundéré, (Adamaoua-Cameroun): Étude volcanologique et pétrologique. Thèse 3e cycle, Université Clermont-Ferrand II, 229 pGoogle Scholar
  85. Thompson RN, Morrison MA, Hendry GL, Parry SJ, Simpson PR, Hutchison R, O’Hara MJ (1984) An assessment of the relative roles of a crust and mantle in magma genesis: an elemental approach (and discussion). Phil Trans Royal Soc London A310(1514):549–590CrossRefGoogle Scholar
  86. Trua T, Deniel C, Mazzuoli R (1999) Crustal control in the genesis of Plio-Quaternary bimodal magmatism of the Main Ethiopian Rift (MER): geochemical and isotopic (Sr, Nd, Pb) evidence. Chemical Geol 155:201–231CrossRefGoogle Scholar
  87. Tsafack JPF, Wandji P, Bardintzeff JM, Bellon H, Guillou H (2009) The Mount Cameroon stratovolcano (Cameroon Volcanic Line Central Africa): petrology, geochemistry, isotope and age data. Geochem Mineral Petrol Sofia 47:65–78Google Scholar
  88. Vicat JP, Pouclet A, Bellion Y, Doumnang JC (2002) Les rhyolites hyperalcalines (pantellérites) du lac Tchad. Composition et signification tectonomagmatique. Compt Rendus Geosci 334:885–891CrossRefGoogle Scholar
  89. Vincent PM, Armstrong RL (1973) Le volcanisme du plateau Kapsiki (Nord-Cameroun) et les formations sédimentaires sous-jacentes. 7th colloq African geol, Firenze, AbstractsGoogle Scholar
  90. Wandji P, Bardintzeff JM, Ménard JJ, Tchoua FM (2000) The alkaline fassaite-bearing volcanic province of the Noun Plain (West-Cameroon). N Jb Miner Mh 1:1–14Google Scholar
  91. Wandji P, Tchokona Seuwui D, Bardintzeff JM, Bellon H, Platevoet B (2008) Rhyolites of the Mbépit Massif in the Cameroon Volcanic Line: an early extrusive volcanic episode of Eocene age. Mineral Petrol 94:271–286CrossRefGoogle Scholar
  92. Wandji P, Tsafack JPF, Bardintzeff JM, Nkouathio DG, Kagou Dongmo A, Bellon H, Guillou H (2009) Xenoliths of dunites, wehrlites and clinopyroxenites in the basanites from Batoke volcanic cone (Mount Cameroon, Central Africa): petrogenetic implications. Mineral Petrol 96(1):81–98CrossRefGoogle Scholar
  93. Youmen D (1994) Etude volcanologique, pétrologique et temporelle de la caldeira des monts Bambouto (Cameroun). Thèse Université Christian Albrecht, Kiel, 274Google Scholar
  94. Youmen D, Schminke HU, Lissom J, Etame J (2005) Données géochronologiques: mise en évidence des différentes phases volcaniques au Miocène dans les monts Bambouto (Ligne du Cameroun). Sci Technol Dév 11(1):49–57Google Scholar
  95. Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2013

Authors and Affiliations

  • Zénon Itiga
    • 1
  • Jacques-Marie Bardintzeff
    • 2
    • 3
    • 4
  • Pierre Wotchoko
    • 5
  • Pierre Wandji
    • 6
  • Hervé Bellon
    • 7
  1. 1.Institute for Geological and Mining Research (IRGM)Branch of Volcanologic and Geophysics Research (ARGV)YaoundéCameroon
  2. 2.IUFMUniv Cergy-PontoiseCergy-PontoiseFrance
  3. 3.Univ Paris-Sud, Laboratoire de Pétrographie-Volcanologie and équipe PlanétologieOrsayFrance
  4. 4.CNRS, OrsayOrsayFrance
  5. 5.École Normale Supérieure, Laboratoire de GéologieUniv BamendaBamendaCameroon
  6. 6.École Normale Supérieure, Laboratoire de GéologieUniv Yaoundé IYaoundéCameroon
  7. 7.CNRS UMR 6538 Domaines océaniques, UBO-IUEMUniversité européenne de BretagneBrest Cédex 3France

Personalised recommendations