Advertisement

Arabian Journal of Geosciences

, Volume 7, Issue 5, pp 2071–2079 | Cite as

Atmospheric pollution in North Africa (ecosystems–atmosphere interactions): a case study in the mining basin of El Guettar–M’Dilla (southwestern Tunisia)

  • Naziha Mokadem
  • Younes HamedEmail author
  • Amina Ben Sâad
  • Imed Gargouri
Original Paper

Abstract

Air quality transcends all scales with in the atmosphere from the local to the global with handovers and feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems, heritage and climate. New insights into the characterisation of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. In the phosphate mining area (El Guettar–M’Dilla basin: Southwestern Tunisia), several diseases have been known as cancer, respiratory, allergies, cardiovascular, dental fluorosis, stress, etc. These diseases are directly related with the installation of the industrial sector of the CPG (from 1896) and the deforestation and the ecosystem degradation (fauna and flora).

Keywords

Air quality Anthropogenic emissions Diseases El Guettar–M’Dilla basin Tunisia 

Notes

Acknowledgements

The authors are thankful to the Editor and the anonymous reviewers and would like to thank the Water, Energy and Environmental Laboratory (L3E)-ENIS-Sfax-Tunisia, the Faculty of Medicine of Sfax and the Regional Blood Transfusion Centre of Gafsa. Special thanks are directed to the staff members of Gafsa Water Resources Division/Agriculture Ministry and the staff members of the CPG-GCT.

References

  1. Andronache C, Gronholm T, Laakso L, Phillips V, Venalainen A (2006) Scavenging of ultrafine particles by rainfall at a boreal site: observations and model estimations. Atmo Chem and Phy 6:4739–4754CrossRefGoogle Scholar
  2. Aneja VP, Schlesinger WH, Erisman JW (2008) Farming pollution. Nat Geosc 1:409–411CrossRefGoogle Scholar
  3. Ashmore MR (2005) Assessing the future global impacts of ozone vegetation. Plant Cell and Env 28:949–964CrossRefGoogle Scholar
  4. Boujlel B, Hamed H, Slimene F, Ben Ali R, Belhammami K, Hamed Y, Ben Dhia H (2008) Evolution of research activities of Gafsa phosphate company. In: 22nd Colloquium of African Geology and 13th conference of Geological Society of Africa Hammamet, Tunisia, 2008, pp 4–6Google Scholar
  5. CPG-GCT (2009) Tunisian phosphate industry. http://www.gct.com.tn/francais/secteur.htm
  6. Cape JN, Kirika A, Rowland AP, Wilson DR, Jickells TD, Cornell S (2001) Organic nitrogen in precipitation: real problem or sampling artefact? The Scientific World 1:230–237CrossRefGoogle Scholar
  7. Cape JN (2008) Surface ozone concentrations and ecosystem health: past trends and a guide to future projections. Sci Total Env 400:257–269CrossRefGoogle Scholar
  8. Cape JN, Hamilton R, Heal MR (2009) Reactive uptake of ozone at simulated leaf surfaces: implications for “non-stomatal” ozone deposition. Atmo Env 43:1116–1123CrossRefGoogle Scholar
  9. Cornell SE, Jickells TD, Cape JN, Rowland AP, Duce RA (2003) Organic nitrogen deposition on land and coastal environments: a review of methods and data. Atmo Env 37:2173–2191CrossRefGoogle Scholar
  10. Dillon TJ, Crowley JN (2008) Direct detection of OH formation in the reactions of HO2 with CH3C(O)O2 and other substituted peroxy radicals. Atmo Chem and Phys 8:4877–4889CrossRefGoogle Scholar
  11. Fang YT, Gundersen P, Mo JM, Zhu WX (2008) Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution. Biogeos 5:339–352CrossRefGoogle Scholar
  12. Fowler D, Cape JN, Coyle M, Flechard C, Kuylenstierna J, Hicks K, Derwent RG, Johnson C, Stevenson D (1999) The global exposure of forests to air pollutants. Wat Air and Soil Poll 116:5–32CrossRefGoogle Scholar
  13. Hamed Y (2009) Caractérisation hydrogéologique, hydrochimique et isotopique du système aquifère de Moularés-Tamerza. Ph.D. thesis, University of Sfax, p 280Google Scholar
  14. Hamed Y (2011) The hydrogeochemical characterization of groundwater in Gafsa-Sidi Boubaker region (Southwestern Tunisia). Arab J Geosci. doi: 10.1007/s12517-011-0393-5
  15. Hamed Y, Ben Sâad A, Ben Dhia H (2010) Effect of cadmium and fluorine (F–Cd) on human health: the case of the Gafsa mining basin (southern Tunisia). The first international conference of the groundwater and pollution in Tizi Ouzou-Algeria, 20–22 AprilGoogle Scholar
  16. Hasson AS, Tyndall GS, Orlando JJ (2004) A product yield study of the reaction of HO2 radicals with ethyl peroxy (C2H5O2), acetyl peroxy (CH3C(O)O2) and acetonyl peroxy (CH3C(O)CH2O2) radicals. J Phy and Chemi A 108:5979–5989CrossRefGoogle Scholar
  17. Hayes F, Mills G, Harmens H, Norris D (2007) Evidence of widespread ozone damage to vegetation in Europe (1990–2006). Programme Coordinating Centre for the ICP Vegetation, Centre for Ecology and Hydrology, Bangor. icpvegetation.ceh.ac.uk
  18. IPCC (2007) Climate Change 2007—the Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the IPCC, Intergovernmental Panel on Climate ChangeGoogle Scholar
  19. Jacobson MZ (2002) Atmospheric pollution: History, science and regulation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Jagiella S, Zabel F (2007) Reaction of phenylperoxy radicals with NO2 at 298 K. Phy Chem Chem Phy 9:5036–5051CrossRefGoogle Scholar
  21. Jenkin ME, Hurley MD, Wallington TJ (2007) Investigation of the radical product channel of the CH3C(O)O2 + HO2 reaction in the gas phase. Phy Chem Chem Phy 9:3149–3162CrossRefGoogle Scholar
  22. Karnosky DF, Skelly JM, Percy KE, Chappelka AH (2007) Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Env Poll 147:489–506CrossRefGoogle Scholar
  23. Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Env Poll 156(3):567–582. doi: j.envpol.2008.04.017/j.envpol.2008.04.017 CrossRefGoogle Scholar
  24. Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: Current state and trends. Island Press, WashingtonGoogle Scholar
  25. Mokadem N, Hamed Y, Jamel I, Hadji R, Ben Dhia H (2012a) Approche géochimique du fonctionnement des aquifères profonds du bassin d’El Guettar (SW Tunisien). Watmed6. 10–12 October, Sousse-TunisieGoogle Scholar
  26. Mokadem N, Hamed Y, Jamel I, Hfaid M, Dhia H (2012b) Hydrogeochemical and isotope evidence of groundwater evolution in El Guettar oasis area, Southwest Tunisia. Quater Inter. doi: j.envpol.2008.04.017/j.quaint.2012.06.013
  27. Mokadem N (2012) Hydrodynamisme et minéralisation des eaux souterraines des aquifères du bassin d’El Guettar (SW Tunisien). Mastère appliqué. Fac. des Sciences de Bizerte. p 120Google Scholar
  28. Naeili MS, Boujlel B, Hajji Y, Ouled Ghrib A, Bouzaeine A, Hamed H, Hamed Y and Ben Dhia H (2008) La compagnie des phosphates de Gafsa plus d’un siècle de développement dans son environnement socio-économique. In: 22nd Colloquim of African Geology and 13th conference of Geological Society of Africa Hammamet Tunisia, 4–6 NovemberGoogle Scholar
  29. Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002) The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeo 57:99–136CrossRefGoogle Scholar
  30. Orlando JJ, Tyndall GS (2001) The atmospheric chemistry of the HC(O)CO radical. Inter J Chem Kin 33:149–156CrossRefGoogle Scholar
  31. Skiba U, Fowler D, Smith KA (1997) Nitric oxide emissions from agricultural soils in temperate and tropical climates: sources, controls and mitigation options. Nut Cyc Agroecosys 48:139–153CrossRefGoogle Scholar
  32. Stern AC (ed) (1968) Air pollution, 2nd edn. New York, AcademicGoogle Scholar
  33. Tang YS, Simmons I, van Dijk N, Di Marco C, Nemitz E, Dämmgen U, Gilke K, Djuricic V, Vidic S, Gliha Z, Borovecki D, Mitosinkova M, Hanssen JE, Uggerud TH, Sanz MJ, Sanz P, Chorda JV, Flechard CR, Fauvel Y, Ferm M, Perrino C, Sutton MA (2009) European scale application of atmospheric reactive nitrogen measurements in a low-cost approach to infer dry deposition fluxes. Agric Ecosys Env 133:183–195CrossRefGoogle Scholar
  34. Thomas PE (1893) Exploration scientifique de la Tunisie. Illustrations de quelques fossiles nouveaux ou critiques des terrains tertiaires et secondaires de la Tunisie, recueillis en 1885 et 1886 par Philippe Thomas. Imprimerie Nationale, ParisGoogle Scholar
  35. Venterea RT, Rolston DE, Cardon ZG (2005) Effects of soil moisture, physical, and chemical characteristics on abiotic nitric oxide production. Nut Cyc Agroecosys 72:27–40CrossRefGoogle Scholar
  36. WHO (2002) World health report: reducing risks, promoting healthy life. World Health Organization, GenevaGoogle Scholar
  37. WHO (2005) Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. World Health Organization, GenevaGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2013

Authors and Affiliations

  • Naziha Mokadem
    • 1
  • Younes Hamed
    • 1
    • 2
    Email author
  • Amina Ben Sâad
    • 3
    • 4
  • Imed Gargouri
    • 1
    • 3
  1. 1.Water, Energy and Environmental Laboratory (L3E)-National Engineers College of Sfax (Tunisia) (ENIS)SfaxTunisia
  2. 2.Department of Earth SciencesFaculty of Sciences of GabesGabesTunisia
  3. 3.Department of ToxicologyFaculty of Medicine of SfaxSfaxTunisia
  4. 4.Regional Blood Transfusion Centre of GafsaGafsaTunisia

Personalised recommendations