Arabian Journal of Geosciences

, Volume 6, Issue 12, pp 4891–4901

Application of the chemometric approach to evaluate the spatial variation of water chemistry and the identification of the sources of pollution in Langat River, Malaysia

  • Wan Ying Lim
  • Ahmad Zaharin Aris
  • Sarva Mangala Praveena
Original Paper

Abstract

The current study presents the application of selected chemometric techniques—hierarchical cluster analysis (HCA) and principal component analysis (PCA)—to evaluate the spatial variation of the water chemistry and to classify the pollution sources in the Langat River. The HCA rendered the sampling stations into two clusters (group 1 and group 2) and identified the vulnerable stations that are under threat. Group1 (LY 1 to LY 14) is associated with seawater intrusion, while group 2 (LY 15 to LY 30) is associated with agricultural and industrial pollution. PCA analysis was applied to the water datasets for group 1 resulting in four components, which explained 85 % of the total variance while group 2 extracted six components, explaining 88 % of the variance. The components obtained from PCA indicated that seawater intrusion, agricultural and industrial pollution, and geological weathering were potential sources of pollution to the study area. This study demonstrated the usefulness of the chemometric techniques on the interpretation of large complex datasets for the effective management of water resources.

Keywords

Hierarchical cluster analysis Principal component analysis Surface water 

References

  1. Abdullah MI, Royle LG (1974) A study of the dissolved and particulate trace elements in the Bristol Channel. J Mar Biol Assoc UK 54(3):581–597. doi:10.1017/S0025315400022761 CrossRefGoogle Scholar
  2. Akbal F, Gürel L, Bahadır T et al (2011) Multivariate statistical techniques for the assessment of surface water quality at the mid-Black Sea Coast of Turkey. Water Air Soil Poll 216(1):21–37. doi:10.1007/s11270-010-0511-0 CrossRefGoogle Scholar
  3. Alkarkhi A, Ahmad A, Easa A (2009a) Assessment of surface water quality of selected estuaries of Malaysia: multivariate statistical techniques. Environmentalist 29(3):255–262. doi:10.1007/s10669-008-9190-4 CrossRefGoogle Scholar
  4. Alkarkhi A, Ismail N, Ahmed A, Easa A (2009b) Analysis of heavy metal concentrations in sediments of selected estuaries of Malaysia—a statistical assessment. Environ Monit Assess 153(1):179–185. doi:10.1007/s10661-008-0347-x CrossRefGoogle Scholar
  5. Alloway BJ (1995) Heavy metals in soils. Blackie Academic & Professional, LondonCrossRefGoogle Scholar
  6. Altın A, Filiz Z, Iscen CF (2009) Assessment of seasonal variations of surface water quality characteristics for Porsuk Stream. Environ Monit Assess 158(1–4):51–65. doi:10.1007/s10661-008-0564-3 CrossRefGoogle Scholar
  7. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Water Works Association, Water Environment Federation, WashingtonGoogle Scholar
  8. Aris AZ, Abdullah MH, Ahmed A, Woong KK (2007) Controlling factors of groundwater hydrochemistry in a small island’s aquifer. Int J Environ Sci Technol 4(4):441–450CrossRefGoogle Scholar
  9. Aris AZ, Praveena SM, Abdullah MH, Radojevic M (2012) Statistical approaches and hydrochemical modelling of groundwater system in small tropical island. J Hydroinform 14(1):206–220. doi:10.2166/hydro.2011.072 CrossRefGoogle Scholar
  10. Berandah FE, Yap CK, Ismail A (2010) Bioaccumulation and distribution of heavy metals (Cd, Cu, Fe, Ni, Pb and Zn) in the different tissues of Chicoreus capucinus Lamarck (Mollusca: Muricidae) collected from Sungai Janggut, Kuala Langat, Malaysia. Environ Asia 3(1):65–71Google Scholar
  11. Boyacioglu H, Boyacioglu H (2008) Water pollution sources assessment by multivariate statistical methods in the Tahtali Basin, Turkey. Environ Geol 54(2):275–282. doi:10.1007/s00254-007-0815-6 CrossRefGoogle Scholar
  12. Bu H, Tan X, Li S, Zhang Q (2010) Water quality assessment of the Jinshui River (China) using multivariate statistical techniques. Environ Earth Sci 60(8):1631–1639. doi:10.1007/s12665-009-0297-9 CrossRefGoogle Scholar
  13. Campbel PGC, Stokes PM (1985) Acidification and toxicity of metals to aquatic biota. Can J Fish Aquat Sci 42(12):2034–2049. doi:10.1139/f85-251 Google Scholar
  14. Connell DW, Miller GJ (1984) Chemistry and ecotoxicology of pollution. Wiley, New YorkGoogle Scholar
  15. Davis JC (1986) Statistics and data analysis in geology, 2nd edn. Wiley, New YorkGoogle Scholar
  16. Debels P, Figueroa R, Urrutia R et al (2005) Evaluation of water quality in the Chillán River (Central Chile) using physicochemical parameters and a modified water quality index. Environ Monit Assess 110(1–3):301–322. doi:10.1007/s10661-005-8064-1 CrossRefGoogle Scholar
  17. Diagomanolin V, Farhang M, Ghazi-Khansari M et al (2004) Heavy metals (Ni, Cr, Cu) in the Karoon waterway river, Iran. Toxicol Lett 151(1):63–67. doi:10.1016/j.toxlet.2004.02.018 CrossRefGoogle Scholar
  18. DOA (1995) Landuse of Selangor and Negeri Sembilan. Department of Agriculture, Kuala LumpurGoogle Scholar
  19. Elder JF (1988) Metal biogeochemistry in surface-water systems: a review of principles and concepts. In: U.S. Geological Survey circular, Issue 1013. Department of the Interior, U.S. Geological Survey, Washington, D.C,Google Scholar
  20. Gobbett DJ, Hutchison CS (1973) Geology of the Malay Peninsula: West Malaysia and Singapore. Wiley-Interscience, New YorkGoogle Scholar
  21. Goh BPL, Chou LM (1997) Heavy metal levels in marine sediments of Singapore. Environ Monit Assess 44(1):67–80. doi:10.1023/a:1005763918958 CrossRefGoogle Scholar
  22. Hait J, Jana RK, Sanyal SK (2009) Processing of copper electrorefining anode slime: a review. Miner Process Extract Metall Rev 118(4):240–252. doi:10.1179/174328509X431463 Google Scholar
  23. Huang J, Ho M, Du P (2011) Assessment of temporal and spatial variation of coastal water quality and source identification along Macau peninsula. Stoch Environ Res Risk Assess 25(3):353–361. doi:10.1007/s00477-010-0373-4 CrossRefGoogle Scholar
  24. Hussain M, Ahmed SM, Abderrahman W (2008) Cluster analysis and quality assessment of logged water at an irrigation project, eastern Saudi Arabia. J Environ Manag 86(1):297–307. doi:10.1016/j.jenvman.2006.12.007 CrossRefGoogle Scholar
  25. JICA and MGDM (2002) The study on the sustainable groundwater resources and environmental management for the Langat Basin in Malaysia. Final Report. vol 3. Kuala Lumpur, MalaysiaGoogle Scholar
  26. Juahir H, Zain S, Yusoff M et al (2011) Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environ Monit Assess 173(1):625–641. doi:10.1007/s10661-010-1411-x CrossRefGoogle Scholar
  27. Kazi TG, Arain MB, Jamali MK et al (2009) Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicol Environ Saf 72(2):301–309. doi:10.1016/j.ecoenv.2008.02.024 CrossRefGoogle Scholar
  28. Krishna AK, Satyanarayanan M, Govil PK (2009) Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India. J Hazard Mater 167(1–3):366–373. doi:10.1016/j.jhazmat.2008.12.131 CrossRefGoogle Scholar
  29. Langner BE (2000) Selenium and selenium compounds. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim. doi:10.1002/14356007.a23_525
  30. Lee YH, Abdullah MP, Chai SY, Mokhtar MB, Ahmad R (2006) Development of possible indicators for sewage pollution for the assessment of Langat River ecosystem health. Malays J Anal Sci 10(1):15–26Google Scholar
  31. Mokhtar MB, Aris AZ, Munusamy V, Praveena SM (2009) Assessment level of heavy metals in Penaeus monodon and Oreochromis spp. in selected aquaculture ponds of high densities development area. Eur J Sci Res 30(3):348–360Google Scholar
  32. Najar I, Khan A (2012) Assessment of water quality and identification of pollution sources of three lakes in Kashmir, India, using multivariate analysis. Environ Earth Sci 66(8):2367–2378. doi:10.1007/s12665-011-1458-1 CrossRefGoogle Scholar
  33. Osman R, Saim N, Juahir H, Abdullah M (2012) Chemometric application in identifying sources of organic contaminants in Langat river basin. Environ Monit Assess 184(2):1001–1014. doi:10.1007/s10661-011-2016-8 CrossRefGoogle Scholar
  34. Praveena SM, Abdullah MH, Bidin K, Aris AZ (2011) Understanding of groundwater salinity using statistical modeling in a small tropical island, East Malaysia. Environmentalist 31(3):279–287. doi:10.1007/s10669-011-9332-y CrossRefGoogle Scholar
  35. Praveena SM, Ahmed A, Radojevic M et al (2008) Multivariate and geoaccumulation index evaluation in mangrove surface sediment of Mengkabong Lagoon, Sabah. Bull Environ Contam Toxicol 81(1):52–56. doi:10.1007/s00128-008-9460-3 CrossRefGoogle Scholar
  36. Reghunath R, Murthy TRS, Raghavan BR (2002) The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India. Water Res 36(10):2437–2442. doi:10.1016/S0043-1354(01)00490-0 CrossRefGoogle Scholar
  37. Reza R, Singh G (2010) Heavy metal contamination and its indexing approach for river water. Int J Environ Sci Technol 7(4):785–792CrossRefGoogle Scholar
  38. Saim N, Osman R, Sari AbgSpian DR et al (2009) Chemometric approach to validating faecal sterols as source tracer for faecal contamination in water. Water Res 43(20):5023–5030. doi:10.1016/j.watres.2009.08.052 CrossRefGoogle Scholar
  39. Sarmani S (1989) The determination of heavy metals in water, suspended materials and sediments from Langat River, Malaysia. Hydrobiologia 176–177(1):233–238. doi:10.1007/bf00026558 CrossRefGoogle Scholar
  40. Sarmani S, Abdullah MP, Baba I, Majid AA (1992) Inventory of heavy metals and organic micropollutants in an urban water catchment drainage basin. Hydrobiologia 235–236(1):669–674. doi:10.1007/bf00026255 CrossRefGoogle Scholar
  41. Shazili NAM, Yunus K, Ahmad AS et al (2006) Heavy metal pollution status in the Malaysian aquatic environment. Aquat Ecosyst Health Manag 9(2):137–145. doi:10.1080/14634980600724023 CrossRefGoogle Scholar
  42. Shokrzadeh M, Saeedi Saravi SS (2009) The study of heavy metals (zinc, lead, cadmium, and chromium) in water sampled from Gorgan coast (Iran), Spring 2008. Toxicol Environ Chem 91(3):405–407. doi:10.1080/02772240902830755 CrossRefGoogle Scholar
  43. Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environ Model Softw 22(4):464–475. doi:10.1016/j.envsoft.2006.02.001 CrossRefGoogle Scholar
  44. Simeonov V, Tsakovski S, Lavric T et al (2004) Multivariate statistical assessment of air quality: a case study. Microchim Acta 148(3–4):293–298. doi:10.1007/s00604-004-0279-2 Google Scholar
  45. Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res 38(18):3980–3992. doi:10.1016/j.watres.2004.06.011 CrossRefGoogle Scholar
  46. Singh KP, Malik A, Singh VK et al (2005) Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. Anal Chimica Acta 550(1–2):82–91. doi:10.1016/j.aca.2005.06.056 CrossRefGoogle Scholar
  47. Taha M (2003) Groundwater and geoenvironmental quality issues in the Langat Basin, Malaysia. In: Kono I, Nishigaki M, Komatsu M (eds) Groundwater engineering-recent advances: Proceedings of the International Symposium, Okayama, Japan, 2003. Taylor & FrancisGoogle Scholar
  48. UPUM (2002) Program Pencegahan dan Peningkatan Kualiti Air Sungai Langat. Final Draft Report. Universiti Malaya Consultancy Unit, Kuala Lumpur, MalaysiaGoogle Scholar
  49. Varol M, Gökot B, Bekleyen A, Şenc B (2012) Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena 92:11–21. doi:10.1016/j.catena.2011.11.013 CrossRefGoogle Scholar
  50. Zulkifli S, Mohamat-Yusuff F, Arai T et al (2010) An assessment of selected trace elements in intertidal surface sediments collected from the Peninsular Malaysia. Environ Monit Assess 169(1):457–472. doi:10.1007/s10661-009-1189-x CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2012

Authors and Affiliations

  • Wan Ying Lim
    • 1
  • Ahmad Zaharin Aris
    • 1
  • Sarva Mangala Praveena
    • 2
  1. 1.Environmental Forensics Research Centre, Faculty of Environmental StudiesUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Environmental and Occupational Health, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations