Arabian Journal of Geosciences

, Volume 7, Issue 1, pp 287–298 | Cite as

Monitoring rangeland ground cover vegetation using multitemporal MODIS data

  • Hassan Yeganeh
  • Seyed jamale Khajedein
  • Fazel Amiri
  • Abdul Rashid B. Mohamed Shariff
Original Paper


The aim of the present research is to monitor changes in herbage production during the grazing season in the Semirom and Brojen regions, Iran, using multitemporal Moderate Resolution Imaging Spectroradiometer (MODIS) data. At first, various preprocessing steps were applied to a topography map. The atmospheric and topographic corrections were applied using subtraction of the dark object method and the Lambert method. Image processing, including false-color composite, principal component analysis, and vegetation indices were employed to produce land use and pasture production maps. Vegetation sampling was carried out over a period of 4 months during June–September 2008, using a stratified random sampling method. Twenty random sampling points were selected, and herbage production was estimated and verified with the double-checking method. Four MODIS data sets were used in this study. The models for image processing and integrating ground data with satellite images were processed, and the resulting images were categorized into seven classes. Finally, the land covers were verified for accuracy. A postclassification analysis was carried out to verify the seven class change detections. The results confirmed that Normalized Difference Vegetation Index (NDVI) and Soil-Adjusted Vegetation Index (SAVI) maps had a close relationship with the field data. The indices produced with shortwave infrared bands had a close relationship with field data where the ground cover and yields were high. The R 2 value observed was 0.85. The changes in the pasture vegetation were high during the growing season in more than 90 % of the pastures. During the growing season, most changes in the pastures belonged to class 5 and 2 in the NDVI and SAVI index maps, respectively.


Rangeland Detection herbage production Vegetation index MODIS 



The authors are grateful to Dr. Biswajeet Pradhan for providing helpful suggestions to improve an early draft of the paper.


  1. Akiyama T, Kawamura K (2007) Grassland degradation in China: methods of monitoring, management and restoration. Grass Sci 53(1):1–17CrossRefGoogle Scholar
  2. Amiri F, Shariff ARBM (2010) Using remote sensing data for vegetation cover assessment in semi-arid rangeland of center province of Iran. World Appl Sci J 11(12):1537–1546Google Scholar
  3. Anderson G, Hanson J, Haas R (1993) Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands. Remote Sens Environ 45(2):165–175CrossRefGoogle Scholar
  4. Anderson LO, Shimabukuro YE, Defries RS, Morton D (2005) Assessment of deforestation in near real time over the Brazilian Amazon using multitemporal fraction images derived from Terra MODIS. Geo Remote Sens Lett 2(3):315–318CrossRefGoogle Scholar
  5. Bannari A, Morin D, Bonn F, Huete A (1995) A review of vegetation indices. Remote Sens Rev 13(1–2):95–120CrossRefGoogle Scholar
  6. Beck PSA, Atzberger C, Hogda KA, Johansen B, Skidmore AK (2006) Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sens Environ 100(3):321–334CrossRefGoogle Scholar
  7. Ben-Ze'ev E, Karnieli A, Agam N, Kaufman Y, Holben B (2006) Assessing vegetation condition in the presence of biomass burning smoke by applying the Aerosol-free Vegetation Index (AFRI) on MODIS images. Int J Remote Sens 27(15):3203–3221CrossRefGoogle Scholar
  8. Biro K, Pradhan B, Buchroithner M, Makeschin F (2011) Land use/land cover change analysis and its impact on soil properties in the Northern Part of Gadarif Region, Sudan. Land Degrad Dev. doi: 10.1002/ldr.1116, Article first published online: 18 Apr 2011 (published online in Wiley Online Library)
  9. Biro K, Pradhan B, Suleiman H, Buchroithner MF (2012) Evaluation of TerraSAR-X data for land use/land cover analysis using object-oriented classification approach in the African Sahel area, Sudan. J Indian Soc Remote Sens doi. doi: 10.1007/s12524-012-0230-7
  10. Chen D, Huang J, Jackson TJ (2005) Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near-and short-wave infrared bands. Remote Sens Environ 98(2):225–236CrossRefGoogle Scholar
  11. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37(1):35–46CrossRefGoogle Scholar
  12. Corresponding KK, Akiyama T, Yokota H, Tsutsumi M, Yasuda T, Watanabe O, Wang G, Wang S (2005) Monitoring of forage conditions with MODIS imagery in the Xilingol steppe, Inner Mongolia. Int J Remote Sens 26(7):1423–1436CrossRefGoogle Scholar
  13. Cottam G, Curtis JT (1956) The use of distance measures in phytosociological sampling. Ecology 37(3):451–460CrossRefGoogle Scholar
  14. Demers MN (1991) Classification and purpose in automated vegetation maps. Geogr Rev 81(3):267–280CrossRefGoogle Scholar
  15. Elmore AJ, Mustard JF, Manning SJ, Lobell DB (2000) Quantifying vegetation change in semiarid environments: precision and accuracy of spectral mixture analysis and the normalized difference vegetation index. Remote Sens Environ 73(1):87–102CrossRefGoogle Scholar
  16. Elvidge CD, Chen Z (1995) Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens Environ 54(1):38–48CrossRefGoogle Scholar
  17. Farzadmehr J, Arzani H, Darvish sefat AA, Jafari M (2004) Investigation in estimating vegetation cover and phytomass production, using enhanced landsat data in a semi arid region. Iranian J Nat Resour 57(2):339–351Google Scholar
  18. Feng X, Zhao Y (2011) Grazing intensity monitoring in Northern China steppe: integrating CENTURY model and MODIS data. Ecol Indicators 11(1):175–182CrossRefGoogle Scholar
  19. Fensholt R, Sandholt I (2003) Derivation of a shortwave infrared water stress index from MODIS near-and shortwave infrared data in a semiarid environment. Remote Sens Environ 87(1):111–121CrossRefGoogle Scholar
  20. Feoli E, Vuerich LG, Zerihun W (2002) Evaluation of environmental degradation in northern Ethiopia using GIS to integrate vegetation, geomorphological, erosion and socio-economic factors. Agr Ecosyst Environ 91(1–3):313–325CrossRefGoogle Scholar
  21. Gao Y, Mas JF, Navarrete A (2009) The improvement of an object-oriented classification using multi-temporal MODIS EVI satellite data. Int J Digital Earth 2(3):219–236CrossRefGoogle Scholar
  22. Gilabert M, González-Piqueras J, Garcia-Haro F, Meliá J (2002) A generalized soil-adjusted vegetation index. Remote Sens Environ 82(2):303–310CrossRefGoogle Scholar
  23. Grigera G, Oesterheld M, Pacín F (2007) Monitoring forage production for farmers' decision making. Agr Syst 94(3):637–648CrossRefGoogle Scholar
  24. Heiskanen J, Kivinen S (2008) Assessment of multispectral, -temporal and -angular MODIS data for tree cover mapping in the tundra–taiga transition zone. Remote Sens Environ 112(5):2367–2380CrossRefGoogle Scholar
  25. Hobbs T (1995) The use of NOAA-AVHRR NDVI data to assess herbage production in the arid rangelands of Central Australia. Int J Remote Sens 16(7):1289–1302CrossRefGoogle Scholar
  26. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1):195–213CrossRefGoogle Scholar
  27. Huete A, Justice C, Liu H (1994) Development of vegetation and soil indices for MODIS-EOS. Remote Sens Environ 49(3):224–234CrossRefGoogle Scholar
  28. Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309CrossRefGoogle Scholar
  29. Jacob F, Petitcolin F, Schmugge T, Vermote E, French A, Ogawa K (2004) Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors. Remote Sens Environ 90(2):137–152CrossRefGoogle Scholar
  30. Jafari R, Lewis MM, Ostendorf B (2007) Evaluation of vegetation indices for assessing vegetation cover in southern arid lands in South Australia. Rangeland J 29(1):39–49CrossRefGoogle Scholar
  31. Jensen JR (2007) Remote sensing of the environment: an earth resource perspective. Pearson Prentice Hall, Upper Saddle River, University of Puerto Rico at Mayaguez, Chapter 11: Remote sensing of vegetationGoogle Scholar
  32. Jianlong L, Tiangang L, Quangong C (1998) Estimating grassland yields using remote sensing and GIS technologies in China. New Zeal J Agr Res 41(1):31–38CrossRefGoogle Scholar
  33. Justice C, Townshend J, Vermote E, Masuoka E, Wolfe R, Saleous N, Roy D, Morisette J (2002) An overview of MODIS land data processing and product status. Remote Sens Environ 83(1–2):3–15CrossRefGoogle Scholar
  34. Karnieli A, Kaufman YJ, Remer L, Wald A (2001) AFRI-aerosol free vegetation index. Remote Sens Environ 77(1):10–21CrossRefGoogle Scholar
  35. Kaufman YJ, Tanre D (1992a) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE T Geosci Remote 30(2):261–270CrossRefGoogle Scholar
  36. Kaufman YJ, Tanre D (1992b) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. Geoscience and Remote Sensing, IEEE Transactions 30(2):261–270CrossRefGoogle Scholar
  37. Kaufman YJ, Wald AE, Remer LA, Gao BC, Li RR, Flynn L (1997) The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE T Geosci Remote 35(5):1286–1298CrossRefGoogle Scholar
  38. Kawamura K, Akiyama T, Yokota H, Tsutsumi M, Watanabe O, Wang S (2003) Quantification of grazing intensities on plant biomass in Xilingol steppe, China using Terra MODIS image. pp 21–22Google Scholar
  39. Kawamura K, Akiyama T, Yokota H, Tsutsumi M, Yasuda T, Watanabe O, Wang S (2005a) Comparing MODIS vegetation indices with AVHRR NDVI for monitoring the forage quantity and quality in Inner Mongolia grassland, China. Grass Sci 51(1):33–40CrossRefGoogle Scholar
  40. Kawamura K, Akiyama T, Yokota H, Tsutsumi M, Yasuda T, Watanabe O, Wang S (2005b) Quantifying grazing intensities using geographic information systems and satellite remote sensing in the Xilingol steppe region, Inner Mongolia, China. Agr Ecosyst Environ 107(1):83–93CrossRefGoogle Scholar
  41. Kelarestaghi A, Jafarian Jeloudar Z (2011) Land use/cover change and driving force analyses in parts of northern Iran using RS and GIS techniques. Arab J Geo 4(3):401–411CrossRefGoogle Scholar
  42. Langley SK, Cheshire HM, Humes KS (2001) A comparison of single date and multitemporal satellite image classifications in a semi-arid grassland. J Arid Environ 49(2):401–411CrossRefGoogle Scholar
  43. Lloyd D (1990) A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Remote Sens Environ 11(12):2269–2279Google Scholar
  44. Lunetta RS, Knight JF, Ediriwickrema J (2005) Land-cover characterization and change detection using multitemporal MODIS NDVI data. IEEE, pp 191–194Google Scholar
  45. Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD (2006) Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens Environ 105(2):142–154CrossRefGoogle Scholar
  46. Makkeasorn A, Chang NB, Li J (2009) Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed. J Environ Manage 90(2):1069–1080CrossRefGoogle Scholar
  47. McAllister D, Valeo C (2007) A robust new method for the remote estimation of LAI in montane and boreal forests. Int J Remote Sens 28(8):1891–1905CrossRefGoogle Scholar
  48. McAllister D, Valeo C (2009) Error and quality assessment for remotely sensed estimates of leaf area index. Can J Remote Sens 35(2):141–151CrossRefGoogle Scholar
  49. Mingwei Z, Qingbo Z, Zhongxin C, Jia L, Yong Z, Chongfa C (2008) Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data. Int J Appl Earth Obs Geo 10(4):476–485CrossRefGoogle Scholar
  50. Mobasheri MR, Shafizadeh Moghadam H, Shayan S (2010) An introduction to MODISI and SCMOD methods for correction of the MODIS snow assessment algorithm. J Indian Soc Remote Sens 38(4):674–685CrossRefGoogle Scholar
  51. Moleele N, Ringrose S, Arnberg W, Lunden B, Vanderpost C (2001) Assessment of vegetation indexes useful for browse (forage) prediction in semi-arid rangelands. Int J Remote Sens 22(5):741–756CrossRefGoogle Scholar
  52. Moran EF, Brondizio E, Mausel P, Wu Y (1994) Integrating Amazonian vegetation, land-use, and satellite data. BioScience 44(5):329–338CrossRefGoogle Scholar
  53. Morisette JT, Privette JL, Justice CO (2002) A framework for the validation of MODIS land products. Remote Sens Environ 83(1–2):77–96CrossRefGoogle Scholar
  54. O'Neill A (1996) Satellite-derived vegetation indices applied to semi-arid shrub lands in Australia. Aust Geogr 27(2):185–199CrossRefGoogle Scholar
  55. Perry CR Jr, Lautenschlager LF (1984) Functional equivalence of spectral vegetation indices. Remote Sens Environ 14(1–3):169–182CrossRefGoogle Scholar
  56. Peters AJ, Walter-Shea EA, Ji L, Vina A, Hayes M, Svoboda MD (2002) Drought monitoring with NDVI-based standardized vegetation index. Photogramm Eng Rem S 68(1):71–75Google Scholar
  57. Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Riedi JC, Frey RA (2003) The MODIS cloud products: algorithms and examples from Terra. IEEE T Geosci Remote 41(2):459–473CrossRefGoogle Scholar
  58. Pohl C, Van Genderen J (1998) Review article multisensor image fusion in remote sensing: concepts, methods and applications. Int J Remote Sens 19(5):823–854CrossRefGoogle Scholar
  59. Purevdorj T, Tateishi R, Ishiyama T, Honda Y (1998) Relationships between percent vegetation cover and vegetation indices. Int J Remote Sens 19(18):3519–3535CrossRefGoogle Scholar
  60. Qi J, Chehbouni A, Huete A, Kerr Y, Sorooshian S (1994) A modified soil adjusted vegetation index. Remote Sens Environ 48(2):119–126CrossRefGoogle Scholar
  61. Rahdari, V., Amiri, F., Maleki, N.S., 2010. Vegetation cover change monitoring applying satellite data during 1972 to 2007. J Environ Earth Sci. 2(3): 118-127Google Scholar
  62. Reeves MC, Winslow JC, Running SW (2001) Mapping weekly rangeland vegetation productivity using MODIS algorithms. J Range Manage 54(2):207–207Google Scholar
  63. Rondeaux G, Steven M, Baret F (1996) Optimization of soil-adjusted vegetation indices. Remote Sens Environ 55(2):95–107CrossRefGoogle Scholar
  64. Rouse J, Haas R, Schell J, Deering D (1973) Monitoring vegetation systems in the Great Plains with ERTS. NASA SP-351, pp 309–317Google Scholar
  65. Roy DP, Borak JS, Devadiga S, Wolfe RE, Zheng M, Descloitres J (2002) The MODIS land product quality assessment approach. Remote Sens Environ 83(1–2):62–76CrossRefGoogle Scholar
  66. Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N, Ohno H (2005) A crop phenology detection method using time-series MODIS data. Remote Sens Environ 96(3):366–374CrossRefGoogle Scholar
  67. Salomonson VV, Barnes W, Xiong J, Kempler S, Masuoka E (2002) An overview of the Earth Observing System MODIS instrument and associated data systems performance. In: IEEE Int Geo Remote Sens Symposium, IGARSS 02. 2002., NASA Goddard Space Flight Center, Greenbelt, MD, USA 2002. IEEE, pp 1174–1176, vol. 1172Google Scholar
  68. Scharlemann JPW, Benz D, Hay SI, Purse BV, Tatem AJ, Wint GRW, Rogers DJ (2008) Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS One 3(1):e1408CrossRefGoogle Scholar
  69. Sedano F, Gong P, Ferrao M (2005) Land cover assessment with MODIS imagery in southern African Miombo ecosystems. Remote Sens Environ 98(4):429–441CrossRefGoogle Scholar
  70. Shi W, Wang M (2009) An assessment of the black ocean pixel assumption for MODIS SWIR bands. Remote Sens Environ 113(8):1587–1597CrossRefGoogle Scholar
  71. Shin D, Pollard JK, Muller JP (1997) Accurate geometric correction of ATSR images. IEEE T Geo Remote Sens 35(4):997–1006CrossRefGoogle Scholar
  72. Simone G, Farina A, Morabito F, Serpico SB, Bruzzone L (2002) Image fusion techniques for remote sensing applications. Information Fusion 3(1):3–15CrossRefGoogle Scholar
  73. Skianis GA, Nikolakopoulos KG (2010) A study of the performance of the Modified Simple Vegetation Index (MSVI), based on probability theory. Ios Press, Washington DCGoogle Scholar
  74. Smith AMS, Wooster MJ (2005) Remote classification of head and backfire types from MODIS fire radiative power and smoke plume observations. Int J Wildland Fire 14(3):249–254CrossRefGoogle Scholar
  75. Song C, Woodcock CE, Seto KC, Lenney MP, Macomber SA (2001) Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sens Environ 75(2):230–244CrossRefGoogle Scholar
  76. Song X, Liu Z, Zhao Y (2004) Cloud detection and analysis of MODIS image. In: Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International, 20–24 Sept. 2004. IEEE, pp 2764–2767 vol. 2764Google Scholar
  77. Tueller P (1991) Remote sensing applications for monitoring rangeland vegetation. Journal of the Grassland Society of Southern Africa 8(4):160–167CrossRefGoogle Scholar
  78. Unsalan C, Boyer KL (2004) Linearized vegetation indices based on a formal statistical framework. Geoscience and Remote Sensing, IEEE Transactions 42(7):1575–1585CrossRefGoogle Scholar
  79. Vaiopoulos D, Corresponding GAS, Nikolakopoulos K (2004) The contribution of probability theory in assessing the efficiency of two frequently used vegetation indices. Int J Remote Sens 25(20):4219–4236CrossRefGoogle Scholar
  80. Van Laake PE, Sanchez-Azofeifa GA (2004) Simplified atmospheric radiative transfer modelling for estimating incident PAR using MODIS atmosphere products. Remote Sens Environ 91(1):98–113CrossRefGoogle Scholar
  81. van Leeuwen WJD, Huete AR, Laing TW (1999) MODIS vegetation index compositing approach: a prototype with AVHRR data. Remote Sens Environ 69(3):264–280CrossRefGoogle Scholar
  82. Vermote EF, El Saleous NZ, Justice CO (2002) Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens Environ 83(1–2):97–111CrossRefGoogle Scholar
  83. Wang J, Rich P, Price K, Kettle W (2004) Relations between NDVI and tree productivity in the central Great Plains. Int J Remote Sens 25(16):3127–3138CrossRefGoogle Scholar
  84. Wang M, Shi W (2007) The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Opt Express 15(24):15722–15733CrossRefGoogle Scholar
  85. Wang Q, Adiku S, Tenhunen J, Granier A (2005) On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens Environ 94(2):244–255CrossRefGoogle Scholar
  86. Wang Q, Xiao L, Li J, Mei X (2008) Land cover classification in Qinling Mountains in China, using time-series MODIS NDVI data. IEEE, pp IV-766–IV-769Google Scholar
  87. Wang S, Liu S, Wang X, Guo J, Shuai Y, Hu N (2008b) A simple method for information extraction of farm field in Tarim River Basin using MODIS data. Int arch Photogramm Remote Sens Spatial Inform Sci 37:1043–1046Google Scholar
  88. Weiss JL, Gutzler DS, Coonrod JEA, Dahm CN (2004) Long-term vegetation monitoring with NDVI in a diverse semi-arid setting, central New Mexico, USA. J Arid Environ 58(2):249–272CrossRefGoogle Scholar
  89. Wessels K, Prince S, Reshef I (2008) Mapping land degradation by comparison of vegetation production to spatially derived estimates of potential production. J Arid Environ 72(10):1940–1949CrossRefGoogle Scholar
  90. Wessman CA, Bateson CA, Benning TL (1997) Detecting fire and grazing patterns in tallgrass prairie using spectral mixture analysis. Ecol Appl 7(2):493–511CrossRefGoogle Scholar
  91. Zhan X, Sohlberg R, Townshend J, DiMiceli C, Carroll M, Eastman J, Hansen M, DeFries R (2002) Detection of land cover changes using MODIS 250 m data. Remote Sens Environ 83(1):336–350CrossRefGoogle Scholar
  92. Zhang H, Lan Y, Lacey R, Hoffmann W, Huang Y (2009) Analysis of vegetation indices derived from aerial multispectral and ground hyperspectral data. Int J Agr Biol Eng 2(3):33–40Google Scholar
  93. Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84(3):471–475CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2012

Authors and Affiliations

  • Hassan Yeganeh
    • 1
  • Seyed jamale Khajedein
    • 2
  • Fazel Amiri
    • 3
    • 4
  • Abdul Rashid B. Mohamed Shariff
    • 4
  1. 1.Young Researchers Club, Ardestan BranchIslamic Azad UniversityArdestanIran
  2. 2.Department of Natural ResourcesIsfahan University of TechnologyIsfahanIran
  3. 3.Faculty member of Islamic Azad UniversityBushehr BranchIran
  4. 4.Geospatial Information Science Research Centre (GIS RC), Faculty of EngineeringUniversiti Putra MalaysiaSelangorMalaysia

Personalised recommendations