Arabian Journal of Geosciences

, Volume 6, Issue 11, pp 4445–4461 | Cite as

Investigation on mantle peridotites from Neyriz ophiolite, south of Iran: geodynamic signals

  • Mohammad Ali Rajabzadeh
  • Teimoor Nazari Dehkordi
Original Paper


Neyriz ophiolite in Abadeh Tashk area appears as four major separated massifs in an area with 125 km2, south of Iran. Peridotites including harzburgite, dunite, and lesser low-Cpx lherzolite are the major constituents of the ophiolite with very minor mafic rocks. Usual gabbros of ophiolite complexes are virtually absent from the study area. Mineral modality associated with bulk rock and mineral chemistry of the peridotites show a progression from fertile to ultra-refractory character, reflected by a progressive decrease in modal pyroxenes and in Al2O3, CaO, SiO2, Sc, Ta, V, and Ga values of the studied rocks by approaching chromite deposits. The Neyriz peridotites vary from low-Cpx lherzolite (MgO, 41.97–43.1 wt.%; Al2O3, 0.8–1.3 wt.%) with low content of Cr# spinel (36.7–37.6) and Fo olivine (90.79–91.5) to harzburgite (MgO, 44.31–45.25 wt.%;Al2O3, 0.29–0.45 wt.%; Cr# spinel, 58.2–73.45; Fo olivine, 91.23–91.56), and then to dunite (MgO, 45.9–49.2 wt.%; Al2O3, 0.18–0.48 wt.%) with higher content of Cr# spinel (74.34–79.36) and Fo olivine (91.75–94.68). Compared to modern oceanic settings, mineral and rock composition of low-Cpx lherzolite plot within the field of mid-ocean-ridge environment, whereas those of harzburgite and dunite fall in the field of fore-arc peridotites. As a result of the studies on minerals and whole rock chemistry along with rock interrelationships, we contend that the peridotites were subsequently affected by percolating hydrous boninitic melt from which the high-Cr–Mg, low-Ti chromitites were formed within mantle wedge above the supra-subduction zone in a fore-arc setting.


Mantle peridotite Ophiolite Geodynamics Neyriz Iran 



M. Ohnenstetter and D. Ohnenstetter (CNRS, Nancy, France) are greatly acknowledged who kindly provided helpful comments during this study. The authors wish thanks the personnel at Service Communications, University Nancy II, France for their help with microprobe analyses. The authors would like to thank the Research Council of Shiraz University for financing this research. We express gratitude to Engineer Parsaei from Fars Chromite Industrial Mining Company, who provided field work possibilities.


  1. Ahmed AH, Arai S, Attia AK (2001) Petrological characteristics of podiform chromitites and associated peridotites of the Pan African Proterozoic ophiolite complexes of Egypt. Miner Deposita 36:72–84CrossRefGoogle Scholar
  2. Alavi M (1980) Tectonostratigraphic evolution of Zagrosides of Iran. Geology 8:144–149CrossRefGoogle Scholar
  3. Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229:211–238CrossRefGoogle Scholar
  4. Aldanmaz E, Schmidt MW, Gourgaud G, Meisel T (2009) Mid-ocean ridge and supra-subduction geochemical signatures in spinel-peridotites from the Neotethyan ophiolites in SW Turkey: implications for upper mantle melting processes. Lithos 113:691–708CrossRefGoogle Scholar
  5. Arai S (1994) Compositional variation of olivine chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. J Volcanol Geotherm Res 59:279–293CrossRefGoogle Scholar
  6. Arai S (1997) Control of wall-rock composition on the formation of podiform chromitites as a result of magma/peridotite interaction. Resour Geol 47(4):177–187Google Scholar
  7. Arai S, Kadoshima K, Morishita T (2006) Widespread arc-related melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian spinels. J Geol Soc London 163:1–11CrossRefGoogle Scholar
  8. Arvin M, Robinson PI (1994) The petrogenesis and tectonic setting of lava from the Baft ophiolite, Southwest of Kerman, Iran. Can J Earth Sci 31:824–834CrossRefGoogle Scholar
  9. Babaie HA, Ghazi AM, Babaie A, La-Tour TE, Hassanipak AA (2000) Geochemistry of arc volcanic rocks of the Zagros crush zone, Neyriz, Iran. J Asian Earth Sci 19(1/2):61–76Google Scholar
  10. Babazadeh SA, De Wever P (2004) Radiolarian Cretaceous age of Soulabest radiolarites in ophiolite suite of eastern Iran. Bull Soc Geol Fr 175(2):121–129Google Scholar
  11. Barnes SJ, Roeder PT (2001) The range of spinel composition in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302CrossRefGoogle Scholar
  12. Barth MG, Mason PRD, Davies GR, Dijkstra AH, Drury MR (2003) Geochemistry of the Othris ophiolite, Greece: evidence for refertilization? J Petrol 44:1757–1785CrossRefGoogle Scholar
  13. Bizimis M, Salters VJM, Bonatti E (2000) Trace and REE content of clinopyroxenes from supra-subduction zone peridotites: Implications for melting and enrichment processes in island arcs. Chem Geol 165:67–85CrossRefGoogle Scholar
  14. Boudier F, Nicolas A (1985) Harzburgite and lherzolite subtypes in ophiolitic and oceanic environments. Earth Planet Sci Lett 76(1–2):84–92CrossRefGoogle Scholar
  15. Caran S, Coban H, Flower MFJ, Ottley CJ, Yilmaz K (2010) Podiform chromitites and mantle peridotites of the Antalya ophiolite, Isparta Angle (SW Turkey): implications for partial melting and melt–rock interaction in oceanic and subduction-related settings. Lithos 114:307–326CrossRefGoogle Scholar
  16. Carmichael ISE (1967) The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contrib Mineral Petrol 14:36–64CrossRefGoogle Scholar
  17. Cawood PA, Kröner A, Collins WJ, Kusky TM, Mooney WD, Windley BF (2009) Accretionary orogens through Earth history. In: Cawood PA, Kröner A (eds) Earth accretionary systems in space and time. J Geol Soc London 318:1–36Google Scholar
  18. Clénet H, Ceuleneer G, Pinet P, Abily B, Daydou Y, Harris E, Amri I, Dantas C (2010) Thick sections of layered ultramafic cumulates in the Oman ophiolite revealed by an airborne hyperspectral survey: petrogenesis and relationship to mantle diapirism. Lithos 114:265–281CrossRefGoogle Scholar
  19. Coleman RG (1977) Ophiolites. Springer-Verlag, Berlin, p 220Google Scholar
  20. Dare SAS, Pearce JA, McDonald I, Styles MT (2009) Tectonic discrimination of peridotites using fO2-Cr and Ga-Ti-FeIII systematics in chrome-spinel. Chem Geol 261:199–216CrossRefGoogle Scholar
  21. Dewey JF, Bird JM (1971) The origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. J Geophys Res 76:3179–3206CrossRefGoogle Scholar
  22. Dick HJB, Bullen T (1984) Chrome spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76CrossRefGoogle Scholar
  23. Dick HJB, Natland JH (1996) Late-Stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. In: Mevel C, Gillis KM, Allan JF, Meyer PS (eds) Proc Ocean Drill Program 147:103–134Google Scholar
  24. Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am 123:387–411CrossRefGoogle Scholar
  25. Dilek Y, Thy P (1998) Structure, petrology and seafloor spreading tectonics of the Kizildag ophiolite, Turkey. In: Mills RA, Harrison K (eds) Modern ocean floor processes and the geological record. J Geol Soc London 148:43–69Google Scholar
  26. Edwards SJ, Pearce JA, Freeman J (2000) New insights concerning the influence of water during the formation of podiform chromitite. In: Dilek Y, Moores E, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust. Geol Soc Am 349:139–147Google Scholar
  27. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346CrossRefGoogle Scholar
  28. Gervilla F, Proenza JA, Frei R, Gonzalez-Jimenez JM, Garrido CJ, Melgarejo JC, Meibom A, Diaz-Martinez R, Lavaut W (2005) Distribution of platinum-group elements and Os isotopes in chromite ores from Mayari-Baracoa Ophiolitic Belt (eastern Cuba). Contrib Mineral Petrol 150:589–607CrossRefGoogle Scholar
  29. Ghazi AM, Hassanipak AA, Mahoney JJ, Duncan RA (2004) Geochemical characteristics, 40Ar/39Ar age and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, SE Iran. Tectonophysics 393:175–193CrossRefGoogle Scholar
  30. Godard M, Jousselin D, Bodinier JL (2000) Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth Planet Sci Lett 180:133–148CrossRefGoogle Scholar
  31. Goodenough KM, Styles MT, Schofield DI, Thomas RJ, Crowley QC, Lilly RM, Mckervey J, Stephenson D, Carney JN (2010) Architecture of the Oman-UAE ophiolite: evidence for a multi-phase magmatic history. Arab J Geosci 3:439–458CrossRefGoogle Scholar
  32. Haynes SJ, Reynolds PH (1980) Early development of Tethys and Jurassic ophiolite displacement. Nature 283:560–563CrossRefGoogle Scholar
  33. Ishii T, Robinson PT, Maekawa H, Fiske R (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu Ogasawara Mariana forearc, Leg 125. In: Fryer P, Pearce JA, Stokking LB (eds) Proc Ocean Drill Program 125:445–485Google Scholar
  34. Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678CrossRefGoogle Scholar
  35. Kamenetsky V, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42(4):655–671CrossRefGoogle Scholar
  36. Kelemen PB, Dick HJB, Quick JE (1992) Formation of harzburgite by pervasive melt-rock reaction in the upper mantle. Nature 358:635–641CrossRefGoogle Scholar
  37. Kubo K (2002) Dunite formation processes in highly depleted peridotite: case study of the Iwanaidake peridotite, Hokkaido, Japan. J Petrol 43:423–448CrossRefGoogle Scholar
  38. Lanphere MA, Pamic J (1983) 40Ar/39Ar age and tectonic setting of ophiolites from Neyriz area, south-east Zagros ranges, Iran. Tectonophysics 96:245–256CrossRefGoogle Scholar
  39. Le Mée L, Girardeau J, Monnier C (2004) Mantle segmentation along the Oman ophiolite fossil mid-ocean ridge. Nature 432:167–172CrossRefGoogle Scholar
  40. Lister G, Forster M (2009) Tectonic mode switches and the nature of orogenesis. Lithos 113:274–291CrossRefGoogle Scholar
  41. Malpas J, Zhou MF, Robinson PT, Reynolds P (2003) Geochemical and geochronological constraints on the origin and emplacement of the Yarlung-Zangbo ophiolites, Southern Tibet. In: Dilek Y, Robinson PT (eds) Ophiolites through earth history. J Geol Soc London 218:191–206Google Scholar
  42. Matsukage K, Kubo K (2003) Chromian spinel during melting experiments of dry peridotite (KLB 1) at 1.0-2.5 GPa. Am Mineral 88:1271–1278Google Scholar
  43. Melcher F, Grum W, Simon G, Thalhammer TV, Stumpfl EF (1997) Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. J Petrol 38:1419–1458CrossRefGoogle Scholar
  44. Monnier C, Girardeau J, Le Mée L, Polve M (2006) Along-ridge petrological segmentation of the mantle in the Oman ophiolite. Geochem Geophys Geosyst 7(11), doi: 10.1029/2006GC001320
  45. Morishita T, Maeda J, Miyashita S, Kumagai H, Matsumoto T, Dick HJB (2007) Petrology of local concentration of chromian spinel in dunite from the slow spreading southwest Indian Ridge. Eur J Mineral 19(6):871–882CrossRefGoogle Scholar
  46. Mukherjee R, Mondal SK, Rosing MT, Frei R (2010) Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar Craton (India): potential parental melts and implications for tectonic setting. Contrib Mineral Petrol 160:865–885CrossRefGoogle Scholar
  47. Nadimi A (2003) Mantle flow patterns at the Neyriz Paleo-spreading center, Iran. Earth Planet Sci Lett 203:93–104CrossRefGoogle Scholar
  48. Nicolas A (1989) Structure of ophiolites and dynamics of oceanic lithosphere. Kluwer Academic, Dordrecht, 367 pCrossRefGoogle Scholar
  49. Nicolas A, Boudier F (1991) Rooting of the sheeted dike complex in the Oman Ophiolite. In: Peters T, Nicolas A, Coleman RG (eds) Ophiolite genesis and evolution of the oceanic lithosphere. Petrol Struct Geol 5:39–54Google Scholar
  50. Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45(12):2423–2458CrossRefGoogle Scholar
  51. Parkinson IJ, Pearce JA (1998) Peridotites from Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J Petrol 39:1577–1618CrossRefGoogle Scholar
  52. Pearce JA, Lippard SJ, Roberts S (1984) Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP, Howells MF (eds) Marginal basin geology. J Geol Soc London 1:77–89Google Scholar
  53. Pearce JA, Barker PF, Edward SJ, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin systems, south Atlantic. Contrib Mineral Petrol 139:36–53CrossRefGoogle Scholar
  54. Piccardo GB, Zanetti A, Muntener O (2007) Melt/peridotite interaction in the Southern Lanzo peridotite: field, textural and geochemical evidence. Lithos 94:181–209CrossRefGoogle Scholar
  55. Plank T, Langmuir CH (1998) The chemical compositions of subducting sediments and its consequences for the crust and mantle. Chem Geol 145:325–394CrossRefGoogle Scholar
  56. Portnyagin MV, Danyushevsky LV, Kamenetsky VS (1997) Coexistence of two distinct mantle sources during formation of ophiolites: a case study of primitive pillow-lavas from the lowest part of the volcanic section of the Troodos Ophiolite, Cyprus. Contrib Mineral Petrol 128:287–301CrossRefGoogle Scholar
  57. Pouchou JL, Pichoir F (1984) Un nouveau modele de calcul pour la microanalyse quantitative par spectrometrie de rayons X Partie I: application a l’analyse des echantillons homogenes. Rech Aerosp 3:167–192Google Scholar
  58. Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model PAP. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum, New YorkGoogle Scholar
  59. Prichard HM, Neary CR, Fisher PC, O’Hara MJ (2008) PGE-rich podiform chromitites in the Al-Ays Ophiolite complex, Saudi Arabia: an example of critical mantle melting to extract and concentrate PGE. Econ Geol 103:1507–1529CrossRefGoogle Scholar
  60. Python M, Ceuleneer G (2003) Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite. Geochem Geophys Geosyst 4(7), doi: 10.1029/2002GC000354
  61. Python M, Ceuleneer G, Arai S (2008) Cr-spinel in mafic-ultramafic mantle dykes: evidence for a two-stage melt production during the evolution of the Oman ophiolite. Lithos 106:137–154CrossRefGoogle Scholar
  62. Rajabzadeh MA (1998) Mineralisation en chromite et elements du groupe du platine dans les ophiolites d’Assemion et de Neyriz, ceinture du Zagros. Ph.D Thesis, Polytechnic University of LorraineGoogle Scholar
  63. Rajabzadeh MA, Moosavinasab Z (2012) Mineralogy and distribution of platinum-group minarals (PGM) and other solid inclusions in the Neyriz ophiolitic chromitites, southern Iran. Can Mineral 50:437–459CrossRefGoogle Scholar
  64. Ricou LE (1968) Une coupe a travers les séries a radiolarite des monts Pichakun (Zagros, Iran). Bull Soc Geol Fr 7(10):478–485Google Scholar
  65. Ricou LE (1974) L’évolution gé ologique de la région de Neyriz (Zagros Iranian) et l’évolution structurale des Zagrides. Thèse, Université Paris-Sud, OrsayGoogle Scholar
  66. Shaker Ardakani AR, Arvin M, Oberhansli R, Mock B, Moeinzadeh SH (2009) Morphology and petrogenesis of pillow lavas from the Ganj ophiolitic complex, Southeastern Kerman, Iran. J Sci Islam Repub Iran 20(2):139–151Google Scholar
  67. Saccani E, Photiades A (2004) Mid-ocean ridge and supra-subduction affinities in the Pindos Massif ophiolites (Greece): implications for magma genesis in a proto-forearc setting. Lithos 73:229–253CrossRefGoogle Scholar
  68. Stocklin J (1977) Structural correlation of the Alpine ranges between Iran and Central Asia. Mem H S Soc geol Fr 8:333–353Google Scholar
  69. Takazawa E, Okayasu T, Satoh K (2003) Geochemistry and origin of the basal lherzolites from the northern Oman ophiolite (northern Fizh block). Geochem Geophys Geosyst 4(2), doi: 10.1029/2001GC000232
  70. Tamura A, Arai S (2006) Harzburgite-dunite-orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos 90:43–56CrossRefGoogle Scholar
  71. Uysal I, Sadiklar MB, Tarkian M, Karsli O, Aydin F (2005) Mineralogy and composition of the chromitites and their platinum-group minerals from Ortaca (Mugla SW Turkey): evidence for ophiolitic chromitite genesis. Mineral Petrol 83:219–242CrossRefGoogle Scholar
  72. Uysal I, Kaliwoda M, Karsli O, Tarkian M, Sadiklar MB, Ottley CJ (2007) Compositional variations as a result of partial melting and malt-peridotite interaction in an Upper mantle section from the Ortaca area, Southwestern Turkey. Can Mineral 45:1471–1493CrossRefGoogle Scholar
  73. Uysal I, Zaccarini F, Sadiklar MB, Tarkian M, Thalhammer OAR, Garuti G (2009) The podiform chromitites in the Dagkuplu and Kavak mines, Eskiseir ophiolite (NW-Turkey): genetic implications of mineralogical and geochemical data. Geol Acta 7:351–362CrossRefGoogle Scholar
  74. Van der laan SR, Arculus RJ, Pearce JA, Murton JB (1992) Petrography, mineral chemistry, and phase relations of the basement boninite series of Site 786, Izu-Bonin forearc. In: Fryer P, Pearce JA, Stokking LB (eds) Proc ocean drill program, vol 125., pp 171–202Google Scholar
  75. Yamasaki T, Maeda J, Mizuta T (2006) Geochemical evidence in clinopyroxenes from gabbroic sequence for two distinct magmatisms in the Oman ophiolite. Earth Planet Sci Lett 251:52–65CrossRefGoogle Scholar
  76. Zhou MF, Robinson PT (1997) Origin and tectonic environment of podiform chromite deposits. Econ Geol 92:259–262CrossRefGoogle Scholar
  77. Zhou MF, Robinson PT, Bai W (1994) Formation of podiform chromitites by melt/rock interaction in the upper mantle. Miner Deposita 29:98–101CrossRefGoogle Scholar
  78. Zhou MF, Robinson PT, Malpas I, Li Z (1996) Podiform chromitites in Luobusa ophiolite (Southern’ Tibet): implications for melt–rock interaction and chromite segregation in the upper mantle. J Petrol 37(1):3–21CrossRefGoogle Scholar
  79. Zhou MF, Sun M, Keays RR, Kerrich R (1998) Controls on platinum-group elemental distributions of podiform chromitites: a case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochim Cosmochim Acta 62:677–688CrossRefGoogle Scholar
  80. Zhou MF, Robinson PT, Malpas J, Edwards SJ, Qi L (2005) REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. J Petrol 46:615–639CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2012

Authors and Affiliations

  • Mohammad Ali Rajabzadeh
    • 1
  • Teimoor Nazari Dehkordi
    • 1
  1. 1.Department of Earth Sciences, Faculty of SciencesShiraz UniversityShirazIran

Personalised recommendations