Advertisement

Arabian Journal of Geosciences

, Volume 6, Issue 10, pp 3693–3702 | Cite as

Terrestrial water dynamics in the lower Ganges—estimates from ENVISAT and GRACE

  • Haris Hasan Khan
  • Arina Khan
  • Shakeel Ahmed
  • Marie-Claude Gennero
  • Kien Do Minh
  • Anny Cazenave
Original Paper

Abstract

In this study, the hydrodynamics of lower Ganges basin in India has been monitored using radar altimetry data from environmental satellite (ENVISAT) mission and microgravity data from the Gravity Recovery and Climate Experiment (GRACE) mission. River stage time series have been constructed for different virtual stations on the lower Ganges. Time series for the integrated water volume changes from microgravity measurements have also been constructed to characterize the seasonal and interannual fluctuation patterns in water storage and flux. The ENVISAT dataset indicates an average seasonal river stage fluctuation of 8 m in the lower Ganges River. The GRACE dataset reveals a seasonal fluctuation ranging from 0.18 to 0.40 m in the vertically integrated total water storage in the lower Ganges basin. The two independent datasets show broad similarity in the lower Ganges basin and outline the importance of space-based techniques for monitoring continental water resources.

Keyword

Altimetry ENVISAT GRACE Virtual station Ganges River stage Time series 

Notes

Acknowledgments

The first author wishes to acknowledge the French Embassy in India for the financial support (Cellules Mixtes de Recheche PhD Fellowship) during the visit to LEGOS at Toulouse, France for the accomplishment of this work.

References

  1. Alsdorf DE, Rodrıguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45:2CrossRefGoogle Scholar
  2. Bamber JL (1994) Ice sheet altimeter processing scheme. Int J Remote Sens 15(4):925–938CrossRefGoogle Scholar
  3. Birkett CM, Mertes LAK, Dunne T, Costa MH, Jasinski MJ (2002) Surface water dynamics in the Amazon Basin: application of satellite radar altimetry. J Geophys Res 107(D20):8059. doi: 10.1029/2001JD000609 CrossRefGoogle Scholar
  4. Bonsor HC, Mansour MM, MacDonald AM, Hughes AG, Hipkin RG, Bedada T (2010) Interpretation of GRACE data of the Nile Basin using a groundwater recharge model. Hydrol Earth Syst Sci 7:4501–4533. doi: 10.5194/hessd-7-4501-2010 CrossRefGoogle Scholar
  5. Central Ground Water Board of India (CGWB) (1997) Report of the ground water resource estimation committee, Ministry Of Water Resources, Government of India, New DelhiGoogle Scholar
  6. Central Ground Water Board of India (CGWB) (2006) Dynamic groundwater resources of India, 370 Central Ground Water Board of India, New Delhi. Available at http://cgwb.gov.in/
  7. Chen JL, Wilson CR, Famiglietti JS, Rodell M (2005) Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) timevariable gravity observations. J Geophys Res, Solid Earth 110:B08408CrossRefGoogle Scholar
  8. Frappart F, Seyler F, Martinez JM, Leon JG, Cazenave A (2005) Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sens Environ 99:387–399CrossRefGoogle Scholar
  9. Frappart F, Do Minh K, L’Hermitte J, Cazenave A, Ramillien G, Le Toan T, Mognard-Campbell N (2006) Water volume change in the lower Mekong from satellite altimetry and imagery data. Geophys J Int 167:570–584. doi: 10.1111/j.1365-246X.2006.03184.x CrossRefGoogle Scholar
  10. Frappart F, Papa F, Famiglietti JS, Prigent C, Rossow WB, Seyler F (2008) Interannual variations of river water storage from a multiple satellite approach: a case study for the Rio Negro River basin. J Geophys Res 113:D21104. doi: 10.1029/2007JD009438 CrossRefGoogle Scholar
  11. Harvey KD, Grabs W (Eds.) (2003) WMO report of the GCOS/GTOS/HWRP expert meeting on hydrological data for global studies, Toronto, Canada, 18–20 Novemeber 2002 Report GCOS 84, Report GTOS 32,WMO/TD-No. 1156Google Scholar
  12. Koster RD, Houser PR, Engman ET, Kustas WP (1999) Remote sensing may provide unprecedented hydrological data. American Geophysical Union. Available at http://www.agu.org/eos_elec
  13. Kouraev AV, Zakharova EA, Samain O, Mognard NM, Cazenave A (2004) Ob river discharge from TOPEX/Poseidon satellite altimetry (1992–2002). Remote Sens Environ 93:238–245CrossRefGoogle Scholar
  14. Kumar V, Jain SK, Singh Y (2010) Analysis of long-term rainfall trends in India. Hydrol Sci J 55(4):484–496. doi: 10.1080/02626667.2010.481373 CrossRefGoogle Scholar
  15. Lee H, Shum CK, Yi Y, Ibaraki M, Kim JW, Braun A, Kuo CY, Lu Z (2009) Louisiana wetland water level monitoring using retracked TOPEX/Poseidon Altimetry. Mar Geodesy 32:284–302. doi: 10.1080/01490410903094767 CrossRefGoogle Scholar
  16. Maheu C, Cazenave A, Mechoso CR (2003) Water level fluctuations in the Plata Basin (South America) from TOPEX/Poseidon Satellite Altimetry. Geophys Res Lett 30(3):1143. doi: 10.1029/2002GL016033 CrossRefGoogle Scholar
  17. Ngo-Duc T, Laval K, Ramillien G, Polcher J, Cazenave A (2007) Validation of the land water storage simulated by Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and Climate Experiment (GRACE) data. Water Resour Res 43:W04427. doi: 10.1029/2006WR004941 CrossRefGoogle Scholar
  18. Papa F, Prigent C, Rossow WB (2007) Ob River flood inundations from satellite observations: a relationship with winter snow parameters and river runoff. J Geophys Res 112:D18103. doi: 10.1029/2007JD008451 CrossRefGoogle Scholar
  19. Parua PK (2010) The Ganga: water use in the Indian subcontinent. Springer, Berlin, pp 267–272. ISBN 9789048131020. doi:  10.1007/978-90-481-3103-7_14
  20. Ramillien G, Frappart F, Cazenave A, Güntner A (2005) Time variations of land water storage from an inversion of 2 years of GRACE geoids. Earth Planet Sci Lett 235:283–301. doi: 10.1016/j.epsl.2005.04.005 CrossRefGoogle Scholar
  21. Rowlands DD, Luthcke SB, Klosko SM, Lemoine FG, Chinn DS, McCarthy JJ, Cox CM, Andersen OB (2005) Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys Res Lett 32(L04310). doi: 10.1029/2004GL021908
  22. Schmidt R, Schwintzer TP, Flechtner F, Reigber C, Güntner A, Doll P, Ramillien G, Cazenave A, Petrovic S, Jochmann H, Wünsch J (2006) GRACE observations of changes in continental water storage. Glob Planet Chang 50:112–126. doi: 10.1016/j.gloplacha.2004.11.018 CrossRefGoogle Scholar
  23. Seo KW, Wilson CR, Famiglietti JS, Chen JL, Rodell M (2006) Terrestrial water mass load changes from Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 42:W05417. doi: 10.1029/2005WR004255 CrossRefGoogle Scholar
  24. Singh RL (1994) India: a regional geography, National Geographical Society of India. UBS Publishers’ Distribution Limited, India, pp 183–252Google Scholar
  25. Sinha R, Friend PF (1994) River systems and their sediment flux, Indo-Gangetic Plains, northern Bihar, India. Sedimentology 41:825–845CrossRefGoogle Scholar
  26. Sinha R, Jain V, Babu GP, Ghosh S (2005) Geomorphic characterization and diversity of the fluvial systems of the Gangetic Plains. Geomorphology 70:207–225CrossRefGoogle Scholar
  27. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505CrossRefGoogle Scholar
  28. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02—an improved Earth gravity field model from GRACE. J Geodesy 79. doi: 10.1007/s00190-005-0480-z, 467-478
  29. Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:L18401. doi: 10.1029/2009GL039401 CrossRefGoogle Scholar
  30. Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31:L11501CrossRefGoogle Scholar
  31. Wehr T, Attema E (2001) Geophysical validation of ENVISAT data products. Adv Space Res 28(1):83–91CrossRefGoogle Scholar
  32. Yeh PJ-F, Swenson SC, Famiglietti JS, Rodell M (2006) Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 42:W12203. doi: 10.1029/2006WR005374 CrossRefGoogle Scholar
  33. Zakharova EA, Kouraev AV, Cazenave A, Seyler F (2006) Amazon River discharge estimated from TOPEX/Poseidon altimetry. C R Geosci 338:188–196. doi: 10.1016/j.crte.2005.10.003 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2012

Authors and Affiliations

  • Haris Hasan Khan
    • 1
    • 2
  • Arina Khan
    • 3
  • Shakeel Ahmed
    • 1
  • Marie-Claude Gennero
    • 4
  • Kien Do Minh
    • 4
  • Anny Cazenave
    • 4
  1. 1.Indo-French Centre for Groundwater Research (IFCGR), National Geophysical Research Institute (NGRI), CSIRHyderabadIndia
  2. 2.Department of Earth SciencePondicherry UniversityPondicherryIndia
  3. 3.Department of GeologyAMU (Aligarh Muslim University)AligarhIndia
  4. 4.Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS), Observatoire Midi-Pyrénées (OMP)ToulouseFrance

Personalised recommendations