Advertisement

Arabian Journal of Geosciences

, Volume 6, Issue 7, pp 2685–2689 | Cite as

New information on radionuclides concentration in phosphorites originating from Tunisia and Algeria

  • Jaloul Bejaoui
  • Mohamed Samaali
  • Souad Baccouche
  • Nafaa Regugui
  • Mohamed Fethi Ben Hamouda
  • Zohra Azzouz
  • Adel Trabelsi
  • Salah Bouhlel
  • Boulamia Salim
Original Paper

Abstract

In this study we investigate the radiological hazard of naturally occurring radioactive material in Tunisian and Algerian phosphorite deposits. Eight samples of phosphorite were collected from the phosphorite mines. The Tunisian and Algerian phosphorites occur in the Late Paleocene and Lower Eocene (Ypresian-Lutetian) in age (Béji Sassi 1984 and Zaïer 1999). Activity concentrations in all the samples were measured by alpha spectrometry and gamma spectrometry. Alpha spectrometry analyses show that the specific activity values of 238U, 234U and 235U in the samples of Tunisian phosphorite were 327 ± 7 (321–327), 326 ± 6 (325–331) and 14.50 ± 0.72 (13.90–15.57) Bq kg−1, respectively. Specific activity measured by gamma spectrometry in the samples of the Tunisian and Algerian phosphorite shows a small difference. Specific activity levels of 40K, 226Ra, 232Th, 235U and 238U in the phosphorite samples from Tunisia were, respectively, 71.10 ± 3.80, 391.54 ± 9.39, 60.38 ± 3.74, 12.72 ± 0.54 and 527.42 ± 49.57 Bq kg−1 and Algeria were 15.72 ± 1.73, 989.65 ± 12.52, 12.08 ± 1.20, 47.50 ± 1.52 and 1,148.78 ± 7.30 Bq kg−1, respectively. The measured value of specific activity of 232Th and 40K in the Tunisian phosphorite samples is relatively higher than that found in the samples of Algerian phosphorite. The measured activity of uranium (238U) in the Tunisian phosphorite (527 ± 49) Bq kg−1 is lower than in Algerian phosphorite. The measured activity of 238U in the Tunisian phosphorite samples was (527–1,315 ± 65) 238U Bq kg−1 which is higher than its maximum background value of 110 Bq kg−1 in soils of the various countries of the world (Tufail et al. Radiat Meas 41:443–451, 2006). Different geological origins of phosphorites deposits are the main reason for the large spread in worldwide specific activities. The obtained results of uranium concentrations in phosphorites of different types (Algerian and Tunisian) demonstrate that the uranium concentrations are mainly governed by the phosphatic material. The present study reveals that phosphorite deposits contain natural radioactivity higher than background level.

Keywords

Phosphorite Uranium activity Radiological hazard Tunisia Algeria 

References

  1. Altschuler ZS (1980) The geochemistry of trace elements in marine phosphorites: part 1. Characteristic abundances and enrichment, marine phosphorites (SEPM Spec. Publ.), no. 29, pp. 19–30Google Scholar
  2. Ashraf E, Higgya RH, Pimpl M (2001) Radiological impacts of natural radioactivity in Abu-Tartor phosphate deposits, Egypt. J Environ Radioact 55:255–267CrossRefGoogle Scholar
  3. Béji-Sassi A (1984) Pétrographie, minéralogie et géochimie des sédiments phosphatés de la bordure de I’lle de Kasserine (Tunisia). In: Thèse 3ème cycle, Université d’Orléans (1984), 230 p.Google Scholar
  4. Ceyhan M (ed.) (2009) World distribution of uranium deposits (UDEPO) with uranium deposit classification, IAEA—TECDOC-1629, Division of Nuclear Fuel CycleGoogle Scholar
  5. Falck WE, Wymer D (2006) Uranium in phosphate fertilizer production. In: Merkel BJ, Hasche-Berger A (eds) Uranium in the environment. Springer, Berlin, pp 857–866CrossRefGoogle Scholar
  6. Guimond, R.J. (1990). Radium in fertilizers. Technical Report International Atomic Energy Agency (IAEA), Environmental behavior of radium 310:113–128.Google Scholar
  7. Hussein EM (1994) Radioactivity of phosphate ore, superphosphate and phosphogypsum in Abu-Zaabal phosphate plant, Egypt. J Health Phys 67:280–283CrossRefGoogle Scholar
  8. Strutt R (1906) On the distribution of radium in the Earth’s crust. Proc R Soc Lond A 78:150–153CrossRefGoogle Scholar
  9. Strutt R (1908) The accumulation of helium in geological time. Proc R Soc Lond A 81:272–277CrossRefGoogle Scholar
  10. UNSCEAR (1988) Ionizing radiation: sources and biological effects. United Nations Scientific Committee on the Effects of Atomic Radiation ReportGoogle Scholar
  11. Visse L (1953) Genèse des gîtes phosphates de Sud Est Algéro-Tunisien : Int. Géol. Cong., 1952, Algers, Monographies Régionales I ère Ser; Algérie-No.27Google Scholar
  12. Volkov RI (1994) Geochemistry of uranium in Vendian-Cambrian phosphorites. Geokhimiya 7:1042–1051Google Scholar

Copyright information

© Saudi Society for Geosciences 2012

Authors and Affiliations

  • Jaloul Bejaoui
    • 1
    • 3
  • Mohamed Samaali
    • 1
  • Souad Baccouche
    • 1
  • Nafaa Regugui
    • 1
  • Mohamed Fethi Ben Hamouda
    • 1
  • Zohra Azzouz
    • 1
  • Adel Trabelsi
    • 1
  • Salah Bouhlel
    • 3
    • 4
  • Boulamia Salim
    • 2
  1. 1.UR-MDTN, Centre National des Sciences et Technologies NucléairesTunisTunisia
  2. 2.Département de géologie et d’Aménagement, Faculté des sciences et sciences de la nature et de la vieUniversité de TébessaTébessaAlgeria
  3. 3.Lab Biotechnologie & Valorisation des Bio-Géo Ressources, Institut Supérieur de Biotechnologie de Sidi ThabetUniversité de la ManoubaArianaTunisia
  4. 4.Département de Géologie, Faculté des Sciences de TunisUniversité de Tunis el ManarArianaTunisia

Personalised recommendations