Arabian Journal of Geosciences

, Volume 4, Issue 7–8, pp 1337–1349 | Cite as

A recent scenario of mass wasting and its impact on the transportation in Alborz Mountains, Iran using geo-information technology

  • Alireza Farrokhnia
  • Saied Pirasteh
  • Biswajeet Pradhan
  • Mohamad Pourkermani
  • Mehrdad Arian
Original Paper

Abstract

Mass movements or mass wasting is being considered as one of the severe forms of natural disasters. Iran is geographically located in the Alps–Himalaya seismicity belt. It has a high potential to mass wasting. This seismic phenomenon creates landslides and rock falls in the high mountains of Alborz and Zagros. These mass movements and various types of slides can be systematically assessed and mapped through traditional mapping frameworks using geo-information technologies. The geo-information-based technology offers the earth scientist to study and map various types of mass movement and stability of slopes. In this study, we used field data coupling with the tectonic-related factors to provide a solution for slope-related hazards. Firstly, various geological and geomorphological factors such as lineaments and faults, vegetation, lithology, slope, drainage, land use/land cover, seismicity and roads network were extracted and compiled using geo-information technology. This is because the factors mentioned above play important role in the instability of the region. Then, the study area was divided into four regions based on the rate of mass wasting and its degree of vulnerability. The results of this study showed that the erosion in Karaj formation is severe. Additionally, this research also reveals that the hydrothermal solutions caused by the erosional activities have influenced the glassy element of tuffs and subsequently changed into the clays. This change has caused the tuffs to be relatively unstable. Further, it is evident that the chemical and physical weathering has had a big impact on it whilst most of the mass wasting has occurred within the unstable tuffs of Karaj formation. Finally, the paper concluded that the recent construction of the new roads in the region has increased the potential danger for generating the mass wastes and thus makes the region more unstable.

Keywords

Mass movement Natural disasters Alborz Mountains Lineaments Landslides Rock falls GIS Remote sensing Iran 

سيناريو حديث لضعف الكتلة وأثره على وسائل النقل في جبال البرز، ايران باستخدام تكنولوجيا المعلومات الجغرافية

الملخص

تعتبر تحركات الكتلة أو ضعف الكتلة واحدة من الأشكال الوخيمة للكوارث الطبيعية. تقع إيران فى الحزام الزلزالى لجبال الهيمالايا - الألب والذى يتميز بارتفاع قدرتها على إضعاف الكتلة. حدوث الزلازل تسبب إنزلاقات أرضية وتساقط الصخور فى جبال البرز وزاجروس المرتفعة. تحركات الكتلة والأنواع المختلفة من الإنزلاقات يمكن تقديرها ورسمها بشكل منتظم خلال إطارات التخريط التقليدية باستخدام تكنولوجيات المعلومات الجغرافية. تكنولوجيا المعلومات الجغرافية تتيح للعلماء دراسة ورسم الأنواع المختلفة لتحركات الكتلة واستقرار المنحدرات. استخدمنا فى هذه الدراسة البيانات الحقلية وعلاقتها بالعوامل التكتونية لتمدنا بحلول للمخاطر المرتبطة بالمنحدرات. فى البداية فإن مختلف العوامل الجيولوجية والجيومورفولوجية مثل الفوالق، والغطاء النباتي، وعلم الصخور والمنحدرات، والصرف، استخدام الأراضي/الغطاء الأرضي، والزلزالية، وشبكة الطرق تم استخراجها وتجميعها باستخدام تكنولوجيا المعلومات الجغرافية لأن هذه العوامل تلعب دورا هاما فى عدم استقرار المنطقة. بناءا على ذلك تم تقسيم المنطقة لأربعة أقاليم حسب درجة ضعف الصخور وقابليتها للانهيار. أوضحت نتائج هذه الدراسة التآكل الحاد لمتكون كرج. بالإضافة لأن البحث يبين أن المحاليل الحارة التى حدثت بأنشطة التآكل أثرت على العنصر الزجاجى فى الأحجار البركانية وتحولها إلى الطين. هذا التحول أدى لعدم ثبات الأحجار البركانية، شاهدا على أن التعرية الكيميائية والفيزيائية كان لها تأثير كبير عليها، بينما الجزء الغالب من ضعف الكتلة حدث فى الأحجار البركانية داخل متكون كرج. وفى النهاية نستنتج من هذه الدراسة أن الإنشاءات الحديثة للطرق الجديدة فى المنطقة زاد من الخطر المحتمل لتوليد ضعف الصخور، الأمر الذى يجعل المنطقة غير مستقرة أكثر.

Notes

Acknowledgments

This paper is a part of Ph.D. thesis of Alireza Farrokhnia, Islamic Azad University/Science and Research Branch, Tehran, Iran. The authors are thankful to Dr. Khosro Tehrani head of the Geology Department of Islamic Azad University science and research branch. Thanks are due to Dr. Ali Sorbi the head of Department of Geology Islamic Azad University Karaj Branch and Mr. Saman Mozafari for their valuable feedback in this research. This article is greatly benefited from very helpful reviews by two anonymous reviewers.

References

  1. Alavi M (1996) Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. J Geodyn 21:1–33CrossRefGoogle Scholar
  2. Alexander DE (1989) Urban landslides. Prog Phys Geog 13:157–191CrossRefGoogle Scholar
  3. Alexander DE (1995) A survey of the field of natural hazards and disaster studies. In: Carrara A, Guzzetti F (eds) Geographical Information Systems in Assessing Natural Hazards. Dordrecht, Kluwer, pp 1–19Google Scholar
  4. Allen MB, Ghassemi MR, Shahrabi M, Qorashib M (2003) Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. J Struct Geol 25:659–672CrossRefGoogle Scholar
  5. Ali SA, Pirasteh S (2003) Remote Sensing and GIS study of tectonics and net erosion rates in the Zagros Strcutural Belt, southwestern Iran. Mapp Sci Remote Sens J 40(4):253–262Google Scholar
  6. Ali SA, Pirasteh S (2004) Geological application of Landsat Etm for mapping structural geology and interpretation: Aided by Remote sensing and GIS. Int J Remote Sens 25(21):4715–4727CrossRefGoogle Scholar
  7. Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne. Lidar Nat Hazard Earth Sys 7:637–650CrossRefGoogle Scholar
  8. Ayazi MH, Pirasteh S, Pradhan B, Mahmoodzadeh A (2010) Disasters and risk reduction in groundwater: Zagros Mountain, Southwest Iran using geoinformatics techniques. Disaster Adv 3(1):51–57Google Scholar
  9. Brunsden D (1993) Mass movements; the research frontier and beyond: a geomorphological approach. Geomorphology 7:85–128CrossRefGoogle Scholar
  10. Clark GC, Davies RG, Hamzepour G, Jones CR (1975) Explanatory text of the Bandar-e-Pahlavi quadrangle map, 1:250, 000. Geological Survey of Iran, Tehran, p 198Google Scholar
  11. Gansser A, Huber H (1962) Geological observations in the central Elburz. Iran Schweiz Mineralog Petrogr Mitt 42:583–630Google Scholar
  12. Guzzetti F, Cardinali M, Reichenbach P, Carrara A (2000) Comparing landslide maps: A case study in the upper Tiber River basin, central Italy. Environ Manage 25(3):247–263CrossRefGoogle Scholar
  13. Haeri SM, Satari MH (1993) Great Landslides Triggered by Manjil Earthquake, 20 June 1990. Nat Disaster Reduction Cent Iran 24:2–15 (in Persian)Google Scholar
  14. Lee S, Pradhan B (2006) Probabilistic landslide risk mapping at Penang Island, Malaysia. J Earth Syst Sci 115(6):1–12CrossRefGoogle Scholar
  15. Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41CrossRefGoogle Scholar
  16. Lee ST, Yu TT, Wang CL, Peng WF (2007) Automatic Geological ineaments Extraction from Digital Elevation Model of Airborne LiDAR. Geophysical Research Abstracts, European Geosciences Union. Vol. 9, SRef-ID: 1607–7962/Google Scholar
  17. McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using highresolution airborne laser altimetry. Geomorphology 57(3–4):331–351CrossRefGoogle Scholar
  18. Mantovani F, Soeters R, Van Westen CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15:213–225CrossRefGoogle Scholar
  19. Pirasteh S, Pradhan B, Mahmoodzadeh A (2009a) Stability mapping and landslide recognition in Zagros Mountain South West Iran: a case study. Disaster Adv 2(1):47–53Google Scholar
  20. Pirasteh S, Pradhan B, Rizvi SM (2009b) Tectonic process analysis in Zagros Mountain with the aid of drainage networks and topography maps dated 1950–2001 in GIS. Arab J Geosci. doi: 10.1007/s12517-009-0100-y Google Scholar
  21. Pirasteh S, Woodbridge K, Rizvi SM (2009c) Geo-information technology (GiT) and tectonic signatures: the River Karun and Dez, Zagros Orogen in south-west Iran. Int J Remote Sens 30(1–2):389–404CrossRefGoogle Scholar
  22. Pirasteh S, Safari HO, Pradhan B, Attarzadeh I (2010a) Litho-morphotectonics analysis using Landsat ETM data and GIS techniques: Zagros Fold Belt (ZFB), SW Iran. Int Geoinformatics Res Dev J 1(2):28–36Google Scholar
  23. Pirasteh S, Rizvi SMA, Ayazi MH, Mahmoodzadeh A (2010b) Using microwave remote sensing for flood study in Bhuj Taluk, Kuchch district Gujarat, India. Int Geoinformatics Res Dev J 1(1):13–24Google Scholar
  24. Pradhan B (2010a) Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv Space Res 45(10):1244–1256CrossRefGoogle Scholar
  25. Pradhan B (2010b) Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environ Earth Sci. doi: 10.1007/s12665-010-0705-1
  26. Pradhan B (2010c) Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling. Environ Ecol Stat. doi: 10.1007/s10651-010-0147-7
  27. Pradhan B (2010d) Role of GIS in natural hazard detection, modeling & mitigation. Disaster Advances 3(1):3–4Google Scholar
  28. Pradhan B (2010e) Application of an advanced fuzzy logic model for landslide susceptibility analysis. Int J Comput Int Sys 3(3):370–381, doi: 10.2991/ijcis.2010.3.3.12
  29. Pradhan B, Lee S (2009) Landslide risk analysis using artificial neural network model focusing on different training sites. Int J Phys Sci 3(11):1–15Google Scholar
  30. Pradhan B, Buchroithner MF (2010) Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia. Environ Eng Geosci 16(2):107–126CrossRefGoogle Scholar
  31. Pradhan B, Lee S (2010a) Delineation of landslide hazard areas using frequency ratio, logistic regression and artificial neural network model at Penang Island, Malaysia. Environ Earth Sci 60:1037–1054CrossRefGoogle Scholar
  32. Pradhan B, Lee S (2010b) Regional landslide susceptibility analysis using backpropagation neural network model at Cameron Highland, Malaysia. Landslides 7:13–30CrossRefGoogle Scholar
  33. Pradhan B, Lee S (2010c) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environ Modell Softw 25:747–759CrossRefGoogle Scholar
  34. Pradhan B, Pirasteh S (2010) Comparison between prediction capabilities of neural network and fuzzy logic techniques for landslide susceptibility mapping. Disaster Adv 3(3):26–34Google Scholar
  35. Pradhan B, Youssef AM (2010) Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arab J Geosci 3(3):319–326CrossRefGoogle Scholar
  36. Pradhan B, Singh RP, Buchroithner MF (2006) Estimation of stress and its use in evaluation of landslide Prone Regions using remote sensing data. Adv Space Res 37:698–709CrossRefGoogle Scholar
  37. Pradhan B, Lee S, Mansor S, Buchroithner MF, Jallaluddin N, Khujaimah Z (2008) Utilization of optical remote sensing data and geographic information system tools for regional landslide hazard analysis by using binomial logistic regression model. J Appl Remote Sens 2:1–11. doi: 10.1117/12.821511 CrossRefGoogle Scholar
  38. Pradhan B, Lee S, Buchroithner MF (2009) Use of geospatial data for the development of fuzzy algebraic operators to landslide hazard mapping: a case study in Malaysia. Appl Geomatics 1:3–15CrossRefGoogle Scholar
  39. Pradhan B, Lee S, Buchroithner MF (2010a) Remote sensing and GIS-based landslide susceptibility analysis and its cross-validation in three test areas using a frequency ratio model. Photogramm Fernerkun 1(1):17–32CrossRefGoogle Scholar
  40. Pradhan B, Lee S, Buchroithner MF (2010b) A GIS-based back-propagation neural network model and its cross application and validation for landslide susceptibility analyses. Comput Environ Urban 34:216–235CrossRefGoogle Scholar
  41. Pradhan B, Oh JJ, Buchroithner MF (2010c) Weight-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomat Nat Haz Risk 1(3):199–223. doi: 10.1080/19475705.2010.498151 CrossRefGoogle Scholar
  42. Pradhan B, Pirasteh S, Varatharajoo R (2010d) Enhancement of automated lineament extraction from IRS- 1B satellite imagery for part of Himalayan region. Int J Geoinformatics 6(2):41–50Google Scholar
  43. Pradhan B, Sezer E, Gokceoglu C, Buchroithner MF (2010e) Landslide susceptibility mapping by neuro-fuzzy approach in a landslide prone area (Cameron Highland, Malaysia). IEEE T Geosci Remote 48(10). doi: 10.1109/TGRS.2010.2050328
  44. Safari HO, Pirasteh S, Pradhan B (2009) Upliftment estimation of the Zagros Transverse Fault in Iran using geoinformatics technology. Remote Sens 1(4):1240–1256CrossRefGoogle Scholar
  45. Safari HO, Pirasteh S, Pradhan B, Gharibhvand LK (2010) Use of remote sensing data and GIS tools for seismic hazard assessment of shallow oilfields and its impact on the settlements in and around Masjed-i-Soleiman area, Zagros Mountains, Iran. Remote Sens 2(5):1364–1377CrossRefGoogle Scholar
  46. Süzen ML, Toprak V (1998) Filtering of satellite images in geological lineament analysis: an application to a fault zone in central Turkey. Int J Remote Sens 19(6):1101–1114CrossRefGoogle Scholar
  47. Youssef AM, Pradhan B, Gaber AFD, Buchroithner MF (2009) Geomorphological hazard analysis along the Egyptian red sea coast between Safaga and Quseir. Nat Hazard Earth Sys 9:751–766CrossRefGoogle Scholar
  48. Youssef A, Pradhan B, Hassan AM (2010a) Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ Earth Sci. doi: 10.1007/s12665-010-0551-1
  49. Youssef AM, Pradhan B, Tarabees E (2010b) Integrated evaluation of urban development suitability based on remote sensing and GIS techniques: contribution from the analytic hierarchy process. Arabian Journal of Geosciences, doi: 10.1007/s12517-009-0118-1

Copyright information

© Saudi Society for Geosciences 2010

Authors and Affiliations

  • Alireza Farrokhnia
    • 1
  • Saied Pirasteh
    • 2
  • Biswajeet Pradhan
    • 2
    • 3
  • Mohamad Pourkermani
    • 4
  • Mehrdad Arian
    • 1
  1. 1.Islamic Azad UniversityKaraj BranchIran
  2. 2.Institute of Advanced TechnologyUniversity Putra MalaysiaSendangMalaysia
  3. 3.Institute for Cartography, Faculty of Forest, Geo and HydrosciencesDresden University of TechnologyDresdenGermany
  4. 4.Department of GeologyShahid Beheshti UniversityTehranIran

Personalised recommendations