Arabian Journal of Geosciences

, Volume 5, Issue 4, pp 545–554 | Cite as

Assessment of soil liquefaction potential based on numerical method- a case study of an urban railway project

  • A. Janalizadeh Choobbasti
  • Mohammad Javad VahdatiradEmail author
  • M. Torabi
  • S. Firouzian
  • A. Barari
Original Paper


Paying special attention to geotechnical hazards such as liquefaction in huge civil projects like urban railways especially in susceptible regions to liquefaction is of great importance. A number of approaches to evaluate the potential for initiation of liquefaction, such as Seed and Idriss simplified method have been developed over the years. Although simplified methods are available in calculating the liquefaction potential of a soil deposit and shear stresses induced at any point in the ground due to earthquake loading, these methods cannot be applied to all earthquakes with the same accuracy, also they lack the potential to predict the pore pressure developed in the soil. Therefore, it is necessary to carry out a ground response analysis to obtain pore pressures and shear stresses in the soil due to earthquake loading. Using soil historical, geological and compositional criteria, a zone of the corridor of Tabriz urban railway line 2 susceptible to liquefaction was recognized. Then, using numerical analysis and cyclic stress method using QUAKE/W finite element code, soil liquefaction potential in susceptible zone was evaluated based on design earthquake.


Liquefaction assessment Ground response analysis Cyclic stress Susceptible zone TURL2 QUAKE/W 

تقييم جهد تميع التربة باستخدام الطرق العددية – دراسة حالة مشروع سكك حديد المناطق الحضرية

الاهتمام الخاص بالاخطار الجيوتقنية مثل تميع التربة في المشاريع الانشائية الكبيرة مثل سكك حديد المناطق الحضرية خاصة في المناطق المشكوك في تعرضها لتميع التربة يعتبر ذات أهمية كبيرة. تم تطوير العديد من التوجهات لتقييم احتمال بدء التميع مثل طريقة Seed and Idriss المبسطة. بالرغم من وجود الطرق المبسطة لحساب احتمال تميع رسوبيات التربة واجهادات القص المستحثة عند أي نقطة في الأرض نتيجة أحمال الزلازل ، ولكن هذه الطرق لا يمكن تطبيقها لجميع الزلازل بنفس الدقة وأيضا تنقصها القدرة على التنبؤ بالضغط المسامي الناشئ في التربة. وبالتالي من الضروري عمل تحليل استجابة الأرض للحصول على الضغوط المسامية في التربة وإجهادات القص الناتجة عن حدوث الزلازل. وباستخدام تاريخ التربة والعوامل الجيولوجية والمركبة تم تحديد منطقة ممر السكك الحديدية في المناطق الحضرية في تابريز الخط 2 (TURL2) والتي يحتمل تعرضها للتميع التربة. ثم باستخدام التحليل العددي وطريقة تتابع الاجهادات والتي تستخدم كود العنصر المحدد QUAKE/W ، تم تحديد جهد تميع التربة في المناطق المشكوك فيها بناءاً على التصميم الزلزالي.


  1. Ambraseys, NN (1988) Engineering seismology, earthquake engineering and structural dynamics, Vol. 17, pp. 1–105Google Scholar
  2. Braja MD (1993) Principles of soil dynamic. PWS-KENT Publishing Company, Southern Lllinois University at CarbondaleGoogle Scholar
  3. Christian JT, Roesset JM, Desai CS (1977) Two and three-dimensional dynamic analyses. In: Desai CS, Christian JT (eds) Chapter 20 in numerical methods in geotechnical engineering. McGraw Hill Book Company, New York, pp 683–718Google Scholar
  4. Dealba P, Chan CK, Seed HB (1975) Determination of soil liquefaction characteristics by large-scale laboratory tests, Report EERC 75–14. University of California, Berkeley, Earthquake Engineering Research CenterGoogle Scholar
  5. Dobry R, Ladd RS, Yokel FY, Chung RM, Powell D (1982) Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method. National Bureau of Standards Science Series 138, Gaithersburg, p 150Google Scholar
  6. Finn WDL, Lee KW, Martin GR (1977) An effective stress model for liquefaction. J Geotech Eng Div (ASCE) 103(GT6):517–533Google Scholar
  7. GLOBAL SEISMIC HAZARD ASSESSMENT PROGRAM (GSHAP) (1997) The test area for seismic hazard assessment in the Caucasus report, joining seismological institutions from the Caucasian republics. Russia, Turkey and IranGoogle Scholar
  8. Hardin BO, Black WL (1968) Vibration modulus of normally consolidated clay. J Soil Mech Found Div (ASCE) 94(SM2):353–369Google Scholar
  9. Hardin BO, Drnevich VP (1972) Shear modulus and damping in soils: design equations and curves. J Soil Mech Found Div (ASCE) 98(SM7):667–692Google Scholar
  10. Ishibashi I, Zhang X (1993) Unified dynamic shear moduli and damping ratios of sand and clay. Soils Found 33(1):182–191CrossRefGoogle Scholar
  11. Ishihara, K (1984) Post-earthquake failure of a tailings dam due to liquefaction of the pond deposit, Proceedings, International Conference on Case Histories in Geotechnical Engineering, University of Missouri, St. Louis, Vol. 3, pp. 1129–1143Google Scholar
  12. Ishihara K (1984b) Stability of natural deposit during earthquakes. Proc 11th Int Conf Soil Mech And Found Eng 1:321–376Google Scholar
  13. Ishihara K (1993) Liquefaction and flow failure during earthquakes. Geotechnique 43(3):351–415CrossRefGoogle Scholar
  14. Jefferies MG (1999) A critical view of liquefaction, physics and mechanics of soil liquefaction. Balkema, Rotterdam, pp 221–235Google Scholar
  15. Kayen RE, Mitchell JK (1997) Assessment of liquefaction potential during earthquakes by arias intensity. J Geotech Geoenviron Eng (ASCE) 123(12):1162–1174CrossRefGoogle Scholar
  16. Kramer, SL (1996) Geotechnical earthquake engineering, Prentice-Hall International Series in Civil Engineering and Engineering MechanicsGoogle Scholar
  17. Liyanapathirana, DS, Poulos, HG (2000) Assessment of soil liquefaction incorporating earthquake characteristics, J Geotech Engng Div, ASCEGoogle Scholar
  18. Liyanapathirana DS, Poulos HG (2002) Numerical simulation of soil liquefaction due to earthquake loading. Soil Dynamics and Earthquake Engineering, Elsevier, pp 511–523Google Scholar
  19. Quake/w Define Version 5.16, Using Help of Software, Geo-Slope International Ltd., Suite 1400, Ford Tower 633–6th Avenue S.W. Calgary, Alberta, Canada T2P 2Y5Google Scholar
  20. Seed HB, Idriss IM (1971) Simplified for evaluation soil liquefaction potential. J Soil Mech Found Div (ASCE) 97(SM9):1249–1273Google Scholar
  21. Seed HB, Peacock WH (1971) Test procedures for measuring soil liquefaction characteristics. J Soil Mech Found Div (ASCE) 97(SM8):1099–1119Google Scholar
  22. Wolf JP (1985) Dynamic soil–structure interaction. Prince Hall, Englewood Cliffs, New Jersey, p 466Google Scholar
  23. Youd TL (1984) Recurrence of liquefaction at the same site. Proc 8th World Conf Earthquake Eng 3:231–238Google Scholar
  24. Youd, TL (1991) Mapping of earthquake-induced liquefaction for seismic zonation, proceedings, 4th International Conference on Seismic Zonation, Earthquake Engineering Research Institute, Stanford University, Vol. 1, pp. 111–147Google Scholar
  25. Youd, TL, Hoose, SN (1977) Liquefaction susceptibility and geologic setting, In Proceeding of the 6th World Conference on Earthquake Engineering, Prentice-Hall, Inc., Vol. 3, pp. 2189–2194Google Scholar
  26. Zhang, G (2001) Estimation of liquefaction-induced ground deformations by CPT & SPT-based approaches, Doctor of Philosophy Thesis in Geotechnical Engineering, University of AlbertaGoogle Scholar
  27. Zienkiewicz, OC, Taylor, RL (1989) The finite element method, 4th Ed., Vol. 1. McGraw-HillGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2010

Authors and Affiliations

  • A. Janalizadeh Choobbasti
    • 1
  • Mohammad Javad Vahdatirad
    • 1
    Email author
  • M. Torabi
    • 2
  • S. Firouzian
    • 1
  • A. Barari
    • 3
  1. 1.Department of Civil EngineeringBabol University of TechnologyBabolIran
  2. 2.Faculty of Mining, Petroleum, and GeophysicsShahroud University of TechnologyShahroudIran
  3. 3.Department of Civil EngineeringAalborg UniversityAalborgDenmark

Personalised recommendations