Advertisement

Arabian Journal of Geosciences

, Volume 5, Issue 1, pp 95–101 | Cite as

Application of TOPSIS method for selecting the most appropriate blast design

  • M. Monjezi
  • H. Dehghani
  • T. N. Singh
  • A. R. Sayadi
  • A. Gholinejad
Original Paper

Abstract

Blasting operation should be performed satisfying some criteria, such as fragmentation, flyrock, and cost. To reach the most appropriate alternative among previous performed blast designs, all the criteria should be simultaneously considered in the analysis. To do so, rather new emerging approaches such as Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), a branch of multi-criteria decision-making techniques could be applied. Using TOPSIS method, the present study tries to investigate the blasting operation in the Tajareh limestone mine and select the most appropriate blasting pattern. According to the obtained results, alternative ten with hole diameter of 64 mm and staggered pattern designed by Ash formula, was selected to be the best decision. Application of this alternative comparatively satisfies both fragmentation and flyrock.

Keywords

Blasting Fragmentation Flyrock Cost TOPSIS 

تطبيق تابسیس طريقة اختيار وأنسب تصميم انفجار

الملخص

نسف العملية ينبغي أن يؤديها تلبية بعض المعايير ، مثل التجزؤ ، وflyrock والتكلفة. للوصول إلى البديل الأكثر ملاءمة بين التصاميم السابقة تنفيذ الانفجار ، ينبغي لجميع المعايير أن يكون في نفس الوقت النظر في التحليل. للقيام بذلك ، وليس النهج الجديدة الناشئة مثل تقنيات لترتيب الأفضلية من التشابه إلى الحل المثالي (TOPSIS) ، وهي فرع من عدة معايير صنع القرار تقنيات يمكن تطبيقها. TOPSIS باستخدام الأسلوب ، فإن الدراسة الحالية تحاول التحقيق في عملية التفجير في Tajareh منجم الحجر الجيري ، وحدد ، في أنسب نمط التفجير. وفقا للنتائج التي تم الحصول عليها ، والبديل مع 10 من ثقب قطره 64 ملم ونمط مراحل تصميم الرماد الصيغة ، اختير ليكون أفضل قرار لنسف عملية بديلة. تطبيق هذا البديل في منجم يمكن أن يسبب توهين كبير من flyrock مع التجزؤ بدلا مقبولة والتكاليف.الكلمات الرئيسية : التفجير ، والتجزؤ ، Flyrock ، التكلفة ،

References

  1. Abo-Sinna MA, Amer AH (2005) Extensions of TOPSIS for multi-objective large-scale nonlinear programming problems. Appl Math Comput 162(1):243–256CrossRefGoogle Scholar
  2. Agrawal VP, Kohli V, Gupta S (1991) Computer aided robot selection: the multiple attribute decision making approach. Int J Prod Res 29:1629–1644CrossRefGoogle Scholar
  3. Ash RL (1973) The influence of geological discontinuities on rock blasting, Ph.D. Thesis, University of MinnesotaGoogle Scholar
  4. Bhowmik S, Raina AK, Chakraborty AK, Ramulu M, Sahu PB, Haldar A, Choudury PB, Srinivas P, Bandopadhyay C (2004) Flyrock prediction and control in opencast mines: a critical appraisal. Eng Min J 5(6):10Google Scholar
  5. Chen CT (2000) Extension of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst 114:1–9CrossRefGoogle Scholar
  6. Cheng S, Chan CW, Huang GH (2003) An integrated multi-criteria decision analysis and inexact mixed integer linear programming approach for solid waste management. Eng Appl Artif Intell 16:543–554CrossRefGoogle Scholar
  7. Cunningham CVB (1983) The Kuz-Ram model for prediction of fragmentation from blasting. 1st International Symposium on Rock Fragmentation by Blasting. Lulea University of Technology. Lulea, Sweden, pp. 439–453Google Scholar
  8. Date CJ (1990) An Introduction to Database Systems. Addison-Wesley, New YorkGoogle Scholar
  9. Fletcher LR, D’Andrea DV (1986) Control of flyrock in blasting, Proc., 12th Conf. on Explosives and Blasting Technique, Atlanta, Georgia, pp.167–177.Google Scholar
  10. Hjelmberg H (1983) Some ideas on how to improve calculations of the fragment size distribution in bench blasting. 1st International Symposium on Rock Fragmentation by Blasting. Lulea University Technology Lulea, Sweden, pp. 469–494Google Scholar
  11. Hustrulid W (1999) Blasting principles for open pit mining, general design concepts, AA Balkema, Rotterdam (1), p. 285Google Scholar
  12. Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications. Springer, BerlinGoogle Scholar
  13. Jee DH, Kang KJ (2000) A method for optimal material selection aided with decision making theory. Mater Des 21:199–206CrossRefGoogle Scholar
  14. Khandelwal M, Singh TN (2006) Prediction of blast induced ground vibrations and frequency in opencast mine—a neural network approach. J Sound Vib 289:711–725CrossRefGoogle Scholar
  15. Kim G, Park CS, Yoon KP (1997) Identifying investment opportunities for advanced manufacturing systems with comparative integrated performance measurement. Int J Prod Econ 50:23–33CrossRefGoogle Scholar
  16. Kuznetsov VM (1973) The mean diameter of the fragments formed by blasting rock. Sov Min Sci 9(2):144–148CrossRefGoogle Scholar
  17. Langefors U, Kihlstrom B (1973) The modern technique of rock blasting. Wiley, New YorkGoogle Scholar
  18. Lundborg N (1974) The hazards of fly rock in rock blasting, Report DS1974, Swedish Detonic Research Foundation, p 12Google Scholar
  19. Lundborg N, Persson A, Ladegaard-Pedersen A, Holmberg R (1975) Keeping the lid on flyrock in open-pit blasting. Eng Min J 176:95–100Google Scholar
  20. Massey JB, Siu KL (2003) Investigation of flyrock incident at Clear Water Bay Road on 6 June. Civil Engineering Department, the Government of the Hong Kong Special Administrative Region, Hong Kong, p. 49Google Scholar
  21. Michaux S, Djordjevic N (2005) Influence of explosive energy on the strength of the rock fragments and SAG mill throughput. Miner Eng 18:439–448CrossRefGoogle Scholar
  22. Parkan C, Wu ML (1999) Decision-making and performance measurement models with applications to robot selection. Comput Ind Eng 36:503–523CrossRefGoogle Scholar
  23. Roth JA (1979) A model for the determination of flyrock range as a function of shot condition. US Department of Commerce, NTIS Report No PB81222358, p 61Google Scholar
  24. Shannon CE, Weaver W (1998) The mathematical theory of communication. University of Illinois Press, IllinoisGoogle Scholar
  25. Singh TN, Kumar SH (1999) Flyrock—causes and control. Minetech 2:12–15Google Scholar
  26. Singh TN, Singh V (2005) An intelligent approach to predict and control ground vibration in mines. Geotech Geolog Eng 23(3):249–262CrossRefGoogle Scholar
  27. Thornton D, Kanchibolta SS, Brunton I (2002) Modelling the impact and blast design variation on blast fragmentation. In: Int J Blasting Fragmentation vol. 6 no.2, Swets and Zeitlinger, The Netherlands, pp 169–188Google Scholar
  28. Tong LI, Su CT (1997) Optimizing multi-response problems in the Taguchi method by fuzzy multiple attribute decision making. Qual Reliab Eng Int 13:25–34CrossRefGoogle Scholar
  29. Verakis HC, Lobb TE (2003) An analysis of blasting accidents in mining operations. In: Proc of the 29th Annual Conference on Explosives and Blasting Technique, Vol. 2, February 2–5. International Society of Explosives Engineers, Cleveland, pp 119–129Google Scholar
  30. Vladislav K, Radomsky M (2005) Fly rock phenomenon and area security in blast related accident. Saf Sci 9:739–750Google Scholar
  31. Wang YM, Elhag TMS (2005) Fuzzy method based on alpha level sets with an application to bridge risk assessment. Expert Systems Appl 31:1–11CrossRefGoogle Scholar
  32. Zhu Z, Mohanty B, Xie H (2007) Numerical investigation of blasting-induced crack initiation and propagation in rocks. Int J Rock Mech Min Sci 44:412–424CrossRefGoogle Scholar
  33. Zhu Z, Xie H, Mohanty B (2008) Numerical investigation of blasting-induced damage in cylindrical rocks. Int J Rock Mech Mining Sci 45:111–121CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2010

Authors and Affiliations

  • M. Monjezi
    • 1
  • H. Dehghani
    • 2
  • T. N. Singh
    • 3
  • A. R. Sayadi
    • 4
  • A. Gholinejad
    • 5
  1. 1.Faculty of EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Faculty of EngineeringTarbiat Modares UniversityTehranIran
  3. 3.Department of Earth ScienceIndian Institute of TechnologyMumbaiIndia
  4. 4.Faculty of EngineeringTarbiat Modares UniversityTehranIran
  5. 5.Islamic Azad UniversityTehranIran

Personalised recommendations