Advertisement

Podosophia

, Volume 27, Issue 4, pp 127–132 | Cite as

Tapebandage bij het inversietrauma

  • Chris RiezebosEmail author
Biomechanica en Bewegingsanalyse
  • 4 Downloads

Samenvatting

Tapebandages bij zowel behandeling als preventie van het inversietrauma van de enkel worden veelvuldig toegepast, vaak in de vorm van de zogenaamde stijgbeugelbandage. Deze wijze van tapen is gebaseerd op de gedachte dat er bij de inversie een adductie van de talus in de enkelvork optreedt. Deze vorm van tapen sluit echter in het geheel niet aan bij de wijze waarop in werkelijkheid de inversiebeweging in de enkel plaatsvindt. Bij die beweging is namelijk sprake van een koppeling tussen de kanteling van de voet en de exorotatie van het been. Dit komt doordat de inversie zich afspeelt in het onderste spronggewricht, waarbij sprake is van een beweging rond de schuine as van het gewricht tussen talus en calcaneus. In dit artikel volgt, na analyse van deze inversiebeweging, de beschrijving van een tapebandage die wél aansluit bij de kinematica van het enkelgewricht.

Trefwoorden

inversie trauma onderste spronggewicht tapebandage 

Literatuur

  1. 1.
    VeiligheidNL. Cijferrapportage enkelblessures. Blessurecijfers 2017. 2017. Beschikbaar via https://www.veiligheid.nl/organisatie/over-veiligheidnl/publicaties. Geraadpleegd op: 3 oktober 2019.Google Scholar
  2. 2.
    Al-Mohrej O, Al-Kenani N. Acute ankle sprain: conservative or surgical approach? EFORT Open Rev. 2016;1:34–44.CrossRefGoogle Scholar
  3. 3.
    Bekerom M van den, Kerkhoffs G, McCollum G, Calder J, Dijk N van. Management of acute lateral ankle ligament injury in the athlete. Knee Surg Sports Traumatol Arthrosc. 2013;21:1390–5.CrossRefGoogle Scholar
  4. 4.
    Physiopedia. Ankle sprain. Epidemiology. Beschikbaar via https://www.physio-pedia.com/Ankle_Sprain. Geraadpleegd op: 3 oktober 2019.
  5. 5.
    Kemler E, Port I van de, Backx F, Dijk N van. A systematic review on the treatment of acute ankle sprain: brace versus other functional treatment types. Sports Med. 2011;41(3):185–97.CrossRefGoogle Scholar
  6. 6.
    Hospital for Special Surgery. Ankle sprain types and treatments. Updated 10-9-2018. Beschikbaar via https://www.hss.edu/conditions_ankle-sprains.asp. Geraadpleegd op: 3 oktober 2019.
  7. 7.
    Physiopedia. Ankle Sprain. Beschikbaar via https://www.physio-pedia.com/Ankle_Sprain. Geraadpleegd op: 3 oktober 2019.
  8. 8.
    D’Hooghe P, Alkhelaifi K, Abdelatif N, Kaux J. From ‘low’ to ‘high’ athletic anklesprains: a comprehensive review. Oper Tech Orthop. 2018;28:54–60.CrossRefGoogle Scholar
  9. 9.
    Edama M, Kageyama I, Kikumoto T, Nakamura M, Ito W, Nakamura E, et al. Morphological features of the anterior talofibular ligament by the number of fiber bundles. Ann Anat. 2018;216:69–74.CrossRefGoogle Scholar
  10. 10.
    Khawaji B, Soames R. The anterior talofibular ligament: a detailed morphological study. Foot. 2015;25:141–7.CrossRefGoogle Scholar
  11. 11.
    Kumai T, Takakura Y, Rufai A, Milz S, Benjamin M. The functional anatomy of the human anterior talofibular ligament in relation to ankle sprains. J Anat. 2002;200:457–65.CrossRefGoogle Scholar
  12. 12.
    Bahr R, Pena F, Shine J, Lew W, Engebretsen L. Ligament force and joint motion in the intact ankle: a cadaveric study. Knee Surg Sports Traumatol Arthrosc. 1998;6:115–21.CrossRefGoogle Scholar
  13. 13.
    Huson A, Spoor C. Tibiotarsal delay in the upper ankle joint during inversion of the foot. J Biomech. 1990;23(4):376.CrossRefGoogle Scholar
  14. 14.
    Huson A. Functional anatomy of the foot. In: Jahss MH, redactie. Disorders of the foot and ankle: medical and surgical treatment. band 1. Philadelphia: Saunders; 1991. pag. 408–31.Google Scholar
  15. 15.
    Leardini A, O’Connor J, Catani F, Giannini S. The role of the passive structures in the mobility and stability of the human ankle joint: a literature review. Foot Ankle Int. 2000;21(7):602–15.CrossRefGoogle Scholar
  16. 16.
    Lepojärvi S, Niinimäki J, Pakarinen H, Koskela L, Leskelä H. Rotational dynamics of the talus in a normal tibiotalar joint as shown by weight-bearing computed tomography. J Bone Joint Surg Am. 2016;98:568–75.CrossRefGoogle Scholar
  17. 17.
    Lynch S. Assessment of the injured ankle in the athlete. J Athl Train. 2002;37(4):406–12.PubMedPubMedCentralGoogle Scholar
  18. 18.
    McKiernan S, Fenech M, Fox D, Stewart I. Sonography of the ankle: the lateral ankle and ankle sprains. Sonography. 2017;4:146–55.CrossRefGoogle Scholar
  19. 19.
    Fong D, Ha S, Mok M, Chan C, Chan K. Kinematics analysis of ankle inversion ligamentous sprain injuries in sports: five cases from televised tennis competitions. Am J Sports Med. 2012;40(11):2627–32.CrossRefGoogle Scholar
  20. 20.
    Mok K, Fong D, Krosshaug T, Engebretsen L, Hung A, Yung P, et al. Kinematics analysis of ankle inversion ligamentous sprain injuries in sports. 2 cases during the 2008 Beijing Olympics. Am J Sports Med. 2011;39(7):1548–52.CrossRefGoogle Scholar
  21. 21.
    Panagiotakis E, Mok K, Fong D, Bull A. Biomechanical analysis of ankle ligamentous sprain injury cases from televised basketball games: understanding when, how and why ligament failure occurs. J Sci Med Sport. 2017;20:1057–61.CrossRefGoogle Scholar
  22. 22.
    Fong D, Hong Y, Shima Y, Krosshaug T, Yung P, Chan K. Biomechanics of supination ankle sprain: a case report of an accidental injury event in the laboratory. Am J Sports Med. 2009;37(4):822–7.CrossRefGoogle Scholar
  23. 23.
    Kristianslund E, Bahr R, Krosshaug T. Kinematics and kinetics of an accidental lateral ankle sprain. J Biomech. 2011;44:2576–8.CrossRefGoogle Scholar
  24. 24.
    Purevsuren T, Batbaatar M, Kim K, Park W, Jang S, Kim Y. Investigation of ligament strains in lateral ankle sprain using computational simulation of accidental injury cases. J Mech Sci Technol. 2017;31(7):3627–32.CrossRefGoogle Scholar
  25. 25.
    Gehring D, Wissler S, Mornieux G, Gollhofer A. How to sprain your ankle—a biomechanical case report of an inversion trauma. J Biomech. 2013;46:175–8.CrossRefGoogle Scholar
  26. 26.
    Edo M, Yamamoto S, Yonezawa T. Factors that determine kinematic coupling behavior of calcaneal pronation/supination and shank rotation during weight bearing: analysis based on foot bone alignment using radiographic images. J Phys Ther Sci. 2018;30(10):1215–20.CrossRefGoogle Scholar
  27. 27.
    Edo M, Yamamoto S. Changes in kinematic chain dynamics between calcaneal pronation/supination and shank rotation during load bearing associated with ankle position during plantar and dorsiflexion. J Phys Ther Sci. 2018;30(12):1479–82.CrossRefGoogle Scholar
  28. 28.
    Fischer K, Willwacher S, Arndt A, Brüggemann G. Calcaneal adduction and eversion are coupled to talus and tibial rotation. J Anat. 2018;233:64–72.CrossRefGoogle Scholar
  29. 29.
    Pohl M, Buckley J. Changes in foot and shank coupling due to alterations in foot strike pattern during running. Clin Biomech. 2008;23:334–41.CrossRefGoogle Scholar
  30. 30.
    Beimersa L, Tuijthof G, Blankevoort L, Jonges R, Maas M, Dijk N van. In-vivo range of motion of the subtalar joint using computed tomography. J Biomech. 2008;41:1390–7.CrossRefGoogle Scholar
  31. 31.
    Goto A, Moritomo H, Itohara T, Watanabe T, Sugamoto K. Three-dimensional in vivo kinematics of the subtalar joint during dorsi-plantarflexion and inversion–eversion. Foot Ankle Int. 2009;30(5):432–8.PubMedGoogle Scholar
  32. 32.
    Jastifer J, Gustafson P. The subtalar joint: biomechanics and functional representations in the literature. Foot. 2014;24:203–9.CrossRefGoogle Scholar
  33. 33.
    Langelaan E van. A kinematical analysis of the tarsal joints. Dissertatie. Leiden: Rijksuniversiteit Leiden; 1983.Google Scholar
  34. 34.
    Fassbind MJ, Rohr ES, Hu Y, Haynor DR, Siegler A, Sangeorzan BJ, et al. Evaluating foot kinematics using magnetic resonance imaging: from maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation. J Biomech Eng. 2011;133(10):4502–7.CrossRefGoogle Scholar
  35. 35.
    Nester C. Review of literature on the axis of rotation at the sub talar joint. Foot. 1998;8:111–8.CrossRefGoogle Scholar
  36. 36.
    Parr W, Chatterjee H, Soligo C. Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions. J Biomech. 2012;45:1103–7.CrossRefGoogle Scholar
  37. 37.
    Riezebos C. Inzicht in de effecten van de scheve as. Podosophia. 2014;22(2):28–9.CrossRefGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum is een imprint van Springer Media B.V., onderdeel van Springer Nature 2019

Authors and Affiliations

  1. 1.RijswijkNederland

Personalised recommendations