Netherlands Heart Journal

, Volume 21, Issue 4, pp 166–172 | Cite as

Cardiopulmonary interactions during mechanical ventilation in critically ill patients

  • T. G. V. Cherpanath
  • W. K. Lagrand
  • M. J. Schultz
  • A. B. J. Groeneveld
Review Article

Abstract

Cardiopulmonary interactions induced by mechanical ventilation are complex and only partly understood. Applied tidal volumes and/or airway pressures largely mediate changes in right ventricular preload and afterload. Effects on left ventricular function are mostly secondary to changes in right ventricular loading conditions. It is imperative to dissect the several causes of haemodynamic compromise during mechanical ventilation as undiagnosed ventricular dysfunction may contribute to morbidity and mortality.

Keywords

Mechanical ventilation Preload Afterload Positive pressure ventilation Cardiopulmonary interaction 

References

  1. 1.
    International consensus conferences in intensive care medicine. Ventilator-associated lung injury in ARDS. This official conference report was cosponsored by the American Thoracic Society, The European Society of Intensive Care Medicine, and The Societé de Réanimation de Langue Française, and was approved by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 1999;160:2118–24.Google Scholar
  2. 2.
    Bouferrache K, Vieillard-Baron A. Acute respiratory distress syndrome, mechanical ventilation, and right ventricular function. Curr Opin Crit Care. 2011;17:30–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Abu-Hilal MA, Mookadam F. Pulsus paradoxus: historical and clinical perspectives. Int J Cardiol. 2010;138:229–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Wilson DJ. Braces, wheelchairs, and iron lungs: the paralyzed body and the machinery of rehabilitation in the polio epidemics. J Med Humanit. 2005;26:173–90.PubMedCrossRefGoogle Scholar
  5. 5.
    Poe G. An artificial respirator. Scientific American; 1907. p. 515.Google Scholar
  6. 6.
    Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis. 1974;110:556–65.PubMedGoogle Scholar
  7. 7.
    The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRefGoogle Scholar
  8. 8.
    Serpa Neto A, Cardoso SO, Manetta JA, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308:1651–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Determann R, Royakkers A, Wolthuis EK, et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care. 2010;14:R1.PubMedCrossRefGoogle Scholar
  10. 10.
    Gajic O, Frutos-Vivar F, Esteban A, et al. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med. 2005;31:922–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Gajic O, Dara DI, Mendez JL, et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32:1817–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Slutsky AS. Lung injury caused by mechanical ventilation. Chest. 1999;116:9S–15S.PubMedCrossRefGoogle Scholar
  13. 13.
    Lachmann B. Open up the lung and keep the lung open. Intensive Care Med. 1992;18:319–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome. JAMA. 2008;299:637–45.PubMedCrossRefGoogle Scholar
  15. 15.
    Cournand A, Motley HL, Werko L, et al. Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Physiol. 1948;152:162–74.PubMedGoogle Scholar
  16. 16.
    Jardin F, Delorme G, Hardy A, et al. Reevaluation of haemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology. 1990;72:966–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Vieillard-Baron A, Loubieres Y, Schmitt JM, et al. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol. 1999;87:1644–50.PubMedGoogle Scholar
  18. 18.
    Pinsky MR. Hemodynamic effects of artificial ventilation. In: Shoemaker WC, Ayres SM, Grenvik A, et al, editors. Textbook of critical care. Philadelphia: Saunders; 1995. p. 911–22.Google Scholar
  19. 19.
    Jardin F, Vieillard-Baron A. Is there a safe plateau pressure in ARDS? The right heart only knows. Intensive Care Med. 2007;33:444–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Guyton AC, Jones CE, Coleman TG. Mean circulatory pressure, mean systemic pressure, and mean pulmonary pressure and their effects on venous return. In: Guyton AC, Jones CE, Coleman TG, editors. Circulatory physiology: cardiac output and its regulation. Philadelphia: Saunders; 1973. p. 205–21.Google Scholar
  21. 21.
    Jardin F. Acute leftward septal shift by lung recruitment maneuver. Intensive Care Med. 2005;31:1148–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Dessap AM, Charron C, Devaquet J, et al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med. 2009;35:1850–8.CrossRefGoogle Scholar
  23. 23.
    Romand JA, Shi W, Pinsky MR. Cardiopulmonary effects of positive pressure ventilation during acute lung injury. Chest. 1995;108:1041–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Luecke T, Pelosi P. Clinical review: positive end-expiratory pressure and cardiac output. Crit Care. 2005;9:607–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Whittenberger JL, McGregor M, Berglund E, et al. Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol. 1960;15:878–82.PubMedGoogle Scholar
  26. 26.
    Shekerdemian L, Bohn D. Cardiovascular effects of mechanical ventilation. Arch Dis Child. 1999;80:475–80.PubMedCrossRefGoogle Scholar
  27. 27.
    Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol. 2005;98:390–403.PubMedCrossRefGoogle Scholar
  28. 28.
    Jardin F, Gueret P, Dubourg O, et al. Two-dimensional echocardiographic evaluation of right ventricular size and contractility in cute respiratory failure. Crit Care Med. 1985;13:952–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Miranda DR, Klompe L, Mekel J, et al. Open lung ventilation does not increase right ventricular outflow impedance: an echo-doppler study. Crit Care Med. 2006;34:2555–60.CrossRefGoogle Scholar
  30. 30.
    Schmitt JM, Vieillard-Baron A, Augarde R, et al. Positive end-expiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit Care Med. 2001;29:1154–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Smeding L, Lust E, Plötz FB, et al. Clinical implications of heart-lung interactions during mechanical ventilation: an update. Neth J Med. 2010;68:56–61.PubMedGoogle Scholar
  32. 32.
    Jardin F, Farcot JC, Boisante L, et al. Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med. 1981;304:387–92.PubMedCrossRefGoogle Scholar
  33. 33.
    Pinsky M, Vincent JL, de Smet JM. Estimating left ventricular filling pressure during positive end-expiratory pressure in humans. Am Rev Respir Dis. 1991;143:25–31.PubMedGoogle Scholar
  34. 34.
    Calvin JE, Driedger AA, Sibbald JE. Positive end-expiratory pressure (PEEP) does not depress left ventricular function in patients with pulmonary edema. Am Rev Respir Dis. 1981;124:121–8.PubMedGoogle Scholar
  35. 35.
    Grace MP, Greenbaum DM. Cardiac performance in response to PEEP in patients with cardiac dysfunction. Crit Care Med. 1982;10:358–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Winter MM, Romeih S, Bouma BJ, et al. Is cardiac CT a reproducible alternative for cardiac MR in adult patients with a systemic right ventricle? Neth Heart J. 2012;20:456–62.PubMedCrossRefGoogle Scholar
  37. 37.
    Vieillard-Baron A, Schmitt JM, Augarde R, et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med. 2001;29:1551–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Pelosi P, Brazzi L, Gattinoni L. Prone position in acute respiratory distress syndrome. Eur Respir J. 2002;20:1017–28.PubMedCrossRefGoogle Scholar
  39. 39.
    Vieillard-Baron A, Charron C, Caille V, et al. Prone positioning unloads the right ventricle in severe ARDS. Chest. 2007;132:1440–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Cornet AD, Hofstra JJ, Swart E, et al. Sildenafil attenuates pulmonary arterial pressure but does not improve oxygenation during ARDS. Intensive Care Med. 2010;36:758–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Boerlage-van Dijk K, Meregalli PG, Planken RN, et al. Percutaneous left ventricular partitioning device for chronic heart failure. Neth Heart J. 2012;20:513–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Berkenstadt H, Margalit M, Hadani M, et al. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg. 2001;92:984–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Marx G, Cope T, McCrossan L, et al. Assessing fluid responsiveness by stroke volume variation in mechanically ventilated patients with severe sepsis. Eur J Anaesthesiol. 2004;21:132–8.PubMedGoogle Scholar
  44. 44.
    Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103:419–28.PubMedCrossRefGoogle Scholar
  45. 45.
    Reuter DA, Felbinger TW, Schmidt C, et al. Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med. 2002;28:392–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Reuter DA, Kirchner A, Felbinger TW, et al. Usefulness of left ventricular stroke volume variations to assess fluid responsiveness in patients with reduced left ventricular function. Crit Care Med. 2003;31:1399–404.PubMedCrossRefGoogle Scholar
  47. 47.
    Rudiger A, Singer M. Mechanism of sepsis-induced cardiac dysfunction. Crit Care Med. 2007;35:1599–608.PubMedCrossRefGoogle Scholar
  48. 48.
    Kortekaas KA, Lindeman JH, Versteegh MI, et al. Preexisting heart failure is an underestimated risk factor in cardiac surgery. Neth Heart J. 2012;20:202–7.PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • T. G. V. Cherpanath
    • 1
  • W. K. Lagrand
    • 1
  • M. J. Schultz
    • 2
  • A. B. J. Groeneveld
    • 3
  1. 1.Department of Intensive Care Medicine, Academic Medical CentreUniversity of AmsterdamAmsterdamthe Netherlands
  2. 2.Department of Intensive Care Medicine, Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical CentreUniversity of AmsterdamAmsterdamthe Netherlands
  3. 3.Department of Intensive Care MedicineErasmus Medical CentreRotterdamthe Netherlands

Personalised recommendations