Netherlands Heart Journal

, Volume 21, Issue 5, pp 238–244

Coronary microcirculatory dysfunction is associated with left ventricular dysfunction during follow-up after STEMI

  • M. Remmelink
  • K. D. Sjauw
  • Z. Y. Yong
  • J. D. E. Haeck
  • M. M. Vis
  • K. T. Koch
  • J. G. P. Tijssen
  • R. J. de Winter
  • J. P. S. Henriques
  • J. J. Piek
  • J. BaanJr.
Original Article

Abstract

Background

Coronary microvascular resistance is increased after primary percutaneous coronary intervention (PCI) for ST-elevation myocardial infarction (STEMI), which may be related in part to changed left ventricular (LV) dynamics. Therefore we studied the coronary microcirculation in relation to systolic and diastolic LV function after STEMI.

Methods

The study cohort consisted of 12 consecutive patients, all treated with primary PCI for a first anterior wall STEMI. At 4 months, we assessed pressure-volume loops. Subsequently, we measured intracoronary pressure and flow velocity and calculated coronary microvascular resistance. Infarct size and LV mass were assessed using magnetic resonance imaging.

Results

Patients with an impaired systolic LV function due to a larger myocardial infarction showed a higher baseline average peak flow velocity (APV) than the other patients (26 ± 7 versus 17 ± 5 cm/s, p = 0.003, respectively), and showed an impaired variable microvascular resistance index (2.1 ± 1.0 versus 4.1 ± 1.3 mmHg cm−1∙s−1, p = 0.003, respectively). Impaired diastolic relaxation time was inversely correlated with hyperaemic APV (r = −0.56, p = 0.003) and positively correlated with hyperaemic microvascular resistance (r = 0.48, p = 0.01). LV dilatation was associated with a reduced variable microvascular resistance index (r = 0.78, p = 0.006).

Conclusion

A larger anterior myocardial infarction results in impaired LV performance associated with reduced coronary microvascular resistance variability, in particular due to higher coronary blood flow at baseline in these compromised left ventricles.

Keywords

Acute myocardial infarction Intracoronary hemodynamics Percutaneous coronary intervention Pressure-volume relations 

References

  1. 1.
    Bax M, de Winter RJ, Schotborgh CE, et al. Short- and long-term recovery of left ventricular function predicted at the time of primary percutaneous coronary intervention in anterior myocardial infarction. J Am Coll Cardiol. 2004;43:534–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Bax M, de Winter RJ, Koch KT, et al. Time course of microvascular resistance of the infarct and noninfarct coronary artery following an anterior wall acute myocardial infarction. Am J Cardiol. 2006;97:1131–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Feldman LJ, Himbert D, Juliard JM, et al. Reperfusion syndrome: relationship of coronary blood flow reserve to left ventricular function and infarct size. J Am Coll Cardiol. 2000;35:1162–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Wakatsuki T, Nakamura M, Tsunoda T, et al. Coronary flow velocity immediately after primary coronary stenting as a predictor of ventricular wall motion recovery in acute myocardial infarction. J Am Coll Cardiol. 2000;35:1835–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Westerhof N, Boer C, Lamberts RR, et al. Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev. 2006;86:1263–308.PubMedCrossRefGoogle Scholar
  6. 6.
    Van Herck PL, Carlier SG, Claeys MJ, et al. Coronary microvascular dysfunction after myocardial infarction: increased coronary zero flow pressure both in the infarcted and in the remote myocardium is mainly related to left ventricular filling pressure. Heart. 2007;93:1231–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Garot P, Pascal O, Simon M, et al. Impact of microvascular integrity and local viability on left ventricular remodelling after reperfused acute myocardial infarction. Heart. 2003;89:393–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Canetti M, Akhter MW, Lerman A, et al. Evaluation of myocardial blood flow reserve in patients with chronic congestive heart failure due to idiopathic dilated cardiomyopathy. Am J Cardiol. 2003;92:1246–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Baan J, van der Velde ET, de Bruin HG, et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation. 1984;70:812–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Siebes M, Verhoeff BJ, Meuwissen M, et al. Single-wire pressure and flow velocity measurement to quantify coronary stenosis hemodynamics and effects of percutaneous interventions. Circulation. 2004;109:756–62.PubMedCrossRefGoogle Scholar
  11. 11.
    De Castro S, Caselli S, Maron M, et al. Left ventricular remodelling index (LVRI) in various pathophysiological conditions: a real-time three-dimensional echocardiographic study. Heart. 2007;93:205–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Sarnoff SJ, Berglund E. Ventricular function. I. Starling’s law of the heart studied by means of simultaneous right and left ventricular function curves in the dog. Circulation. 1954;9:706–18.PubMedCrossRefGoogle Scholar
  13. 13.
    Sonnenblick EH. Force-velocity relations in mammalian heart muscle. Am J Physiol. 1962;202:931–9.PubMedGoogle Scholar
  14. 14.
    Suga H. Ventricular energetics. Physiol Rev. 1990;70:247–77.PubMedGoogle Scholar
  15. 15.
    Remmelink M, Sjauw KD, Henriques JP, et al. Acute left ventricular dynamic effects of primary percutaneous coronary intervention: from occlusion to reperfusion. J Am Coll Cardiol. 2009;53:1498–502.PubMedCrossRefGoogle Scholar
  16. 16.
    Steendijk P, Tulner SA, Bax JJ, et al. Hemodynamic effects of long-term cardiac resynchronization therapy: analysis by pressure-volume loops. Circulation. 2006;113:1295–304.PubMedCrossRefGoogle Scholar
  17. 17.
    Sunagawa K, Maughan WL, Burkhoff D, et al. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983;245:H773–80.PubMedGoogle Scholar
  18. 18.
    Tonino PA, de Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.PubMedCrossRefGoogle Scholar
  19. 19.
    Remmelink M, Sjauw KD, Henriques JP, et al. Effects of left ventricular unloading by Impella recover LP2.5 on coronary hemodynamics. Catheter Cardiovasc Interv. 2007;70:532–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Chamuleau SA, Siebes M, Meuwissen M, et al. Association between coronary lesion severity and distal microvascular resistance in patients with coronary artery disease. Am J Physiol Heart Circ Physiol. 2003;285:H2194–200.PubMedGoogle Scholar
  21. 21.
    Starling MR. Left ventricular-arterial coupling relations in the normal human heart. Am Heart J. 1993;125:1659–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Paulus WJ, Tschope C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28:2539–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Hirsch A, Nijveldt R, Haeck JD, et al. Relation between the assessment of microvascular injury by cardiovascular magnetic resonance and coronary Doppler flow velocity measurements in patients with acute anterior wall myocardial infarction. J Am Coll Cardiol. 2008;51:2230–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Braunwald E. Myocardial reperfusion, limitation of infarct size, reduction of left ventricular dysfunction, and improved survival. Should the paradigm be expanded? Circulation. 1989;79:441–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Daher E, Dione DP, Heller EN, et al. Acute ischemic dysfunction alters coronary flow reserve in remote nonischemic regions: potential mechanical etiology identified in an acute canine model. J Nucl Cardiol. 2000;7:112–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Shimada Y, Yoshiyama M, Tanaka H, et al. Convalescent stage coronary flow reserve and late myocardial morphologic outcomes in patients with first anterior acute myocardial infarction. Circ J. 2004;68:208–13.PubMedCrossRefGoogle Scholar
  27. 27.
    Sjauw KD, Remmelink M, Baan Jr J, et al. Left ventricular unloading in acute ST-segment elevation myocardial infarction patients is safe and feasible and provides acute and sustained left ventricular recovery. J Am Coll Cardiol. 2008;51:1044–6.PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • M. Remmelink
    • 1
  • K. D. Sjauw
    • 1
  • Z. Y. Yong
    • 1
  • J. D. E. Haeck
    • 1
  • M. M. Vis
    • 1
  • K. T. Koch
    • 1
  • J. G. P. Tijssen
    • 1
  • R. J. de Winter
    • 1
  • J. P. S. Henriques
    • 1
  • J. J. Piek
    • 1
  • J. BaanJr.
    • 1
  1. 1.Department of CardiologyAcademic Medical Centre—University of AmsterdamAmsterdamthe Netherlands

Personalised recommendations