Advertisement

Netherlands Heart Journal

, Volume 21, Issue 4, pp 183–188 | Cite as

Neurocardiological differences between musicians and control subjects

  • J. L. I. Burggraaf
  • T. W. Elffers
  • F. M. Segeth
  • F. M. C. Austie
  • M. B. Plug
  • M. G. J. Gademan
  • A. C. Maan
  • S. Man
  • M. de Muynck
  • T. Soekkha
  • A. Simonsz
  • E. E. van der Wall
  • M. J. Schalij
  • C. A. SwenneEmail author
Original Article – E-LEARNING

Abstract

Background

Exercise training is beneficial in health and disease. Part of the training effect materialises in the brainstem due to the exercise-associated somatosensory nerve traffic. Because active music making also involves somatosensory nerve traffic, we hypothesised that this will have training effects resembling those of physical exercise.

Methods

We compared two groups of healthy, young subjects between 18 and 30 years: 25 music students (13/12 male/female, group M) and 28 controls (12/16 male/female, group C), peers, who were non-musicians. Measurement sessions to determine resting heart rate, resting blood pressure and baroreflex sensitivity (BRS) were held during morning hours.

Results

Groups M and C did not differ significantly in age (21.4 ± 3.0 vs 21.2 ± 3.1 years), height (1.79 ± 0.11 vs 1.77 ± 0.10 m), weight (68.0 ± 9.1 vs 66.8 ± 10.4 kg), body mass index (21.2 ± 2.5 vs 21.3 ± 2.4 kg∙m−2) and physical exercise volume (39.3 ± 38.8 vs 36.6 ± 23.6 metabolic equivalent hours/week). Group M practised music daily for 1.8 ± 0.7 h. In group M heart rate (65.1 ± 10.6 vs 68.8 ± 8.3 beats/min, trend P =0.08), systolic blood pressure (114.2 ± 8.7 vs 120.3 ± 10.0 mmHg, P = 0.01), diastolic blood pressure (65.0 ± 6.1 vs 71.0 ± 6.2 mmHg, P < 0.01) and mean blood pressure (83.7 ± 6.4 vs 89.4 ± 7.1, P < 0.01) were lower than in group C. BRS in groups M and C was 12.9 ± 6.7 and 11.3 ± 5.8 ms/mmHg, respectively (P = 0.17).

Conclusions

The results of our study suggest that active music making has training effects resembling those of physical exercise training. Our study opens a new perspective, in which active music making, additionally to being an artistic activity, renders concrete health benefits for the musician.

Keywords

Exercise training Music Heart rate Blood pressure Baroreflex 

Notes

Acknowledgements

We thank Mortara Rangoni Europe for providing the ST-Surveyor monitoring system used for recording of the ECG and the continuous noninvasive blood pressure signals for the purpose of later off-line baroreflex evaluation.

Conflicts of interest

None.

References

  1. 1.
    Pliquett RU, Fasshauer M, Bluher M, et al. Neurohumoral stimulation in type-2-diabetes as an emerging disease concept. Cardiovasc Diabetol. 2004;3:4.CrossRefGoogle Scholar
  2. 2.
    Hsueh WA, Wyne K. Renin-Angiotensin-aldosterone system in diabetes and hypertension. J Clin Hypertens (Greenwich). 2011;13:224–37.CrossRefGoogle Scholar
  3. 3.
    Mancia G, Bousquet P, Elghozi JL, et al. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007;25:909–20.CrossRefGoogle Scholar
  4. 4.
    Essick EE, Sam F. Cardiac hypertrophy and fibrosis in the metabolic syndrome: a role for aldosterone and the mineralocorticoid receptor. Int J Hypertens. 2011;2011:346985.CrossRefGoogle Scholar
  5. 5.
    Triposkiadis F, Karayannis G, Giamouzis G, et al. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747–62.CrossRefGoogle Scholar
  6. 6.
    Hein S, Arnon E, Kostin S, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107:984–91.CrossRefGoogle Scholar
  7. 7.
    Izzo Jr JL, Gradman AH. Mechanisms and management of hypertensive heart disease: from left ventricular hypertrophy to heart failure. Med Clin North Am. 2004;88:1257–71.CrossRefGoogle Scholar
  8. 8.
    Frenneaux MP. Autonomic changes in patients with heart failure and in post-myocardial infarction patients. Heart. 2004;90:1248–55.CrossRefGoogle Scholar
  9. 9.
    Gademan MG, Swenne CA, Verwey HF, et al. Effect of exercise training on autonomic derangement and neurohumoral activation in chronic heart failure. J Card Fail. 2007;13:294–303.CrossRefGoogle Scholar
  10. 10.
    Mueller PJ. Exercise training and sympathetic nervous system activity: evidence for physical activity dependent neural plasticity. Clin Exp Pharmacol Physiol. 2007;34:377–84.CrossRefGoogle Scholar
  11. 11.
    Michelini LC, Stern JE. Exercise-induced neuronal plasticity in central autonomic networks: role in cardiovascular control. Exp Physiol. 2009;94:947–60.CrossRefGoogle Scholar
  12. 12.
    Andersson S, Lundeberg T. Acupuncture–from empiricism to science: functional background to acupuncture effects in pain and disease. Med Hypotheses. 1995;45:271–81.CrossRefGoogle Scholar
  13. 13.
    Thoren P, Floras JS, Hoffmann P, et al. Endorphins and exercise: physiological mechanisms and clinical implications. Med Sci Sports Exerc. 1990;22:417–28.PubMedGoogle Scholar
  14. 14.
    Kaada B, Vik-mo H, Rosland G, et al. Transcutaneous nerve stimulation in patients with coronary arterial disease: haemodynamic and biochemical effects. Eur Heart J. 1990;11:447–53.PubMedGoogle Scholar
  15. 15.
    Lee HS, Kim JY. Effects of acupuncture on blood pressure and plasma renin activity in two-kidney one clip Goldblatt hypertensive rats. Am J Chin Med. 1994;22:215–9.CrossRefGoogle Scholar
  16. 16.
    Maeda M, Kachi H, Ichihashi N, et al. The effect of electrical acupuncture-stimulation therapy using thermography and plasma endothelin (ET-1) levels in patients with progressive systemic sclerosis (PSS). J Dermatol Sci. 1998;17:151–5.CrossRefGoogle Scholar
  17. 17.
    Zhang S, Ye X, Shan Q, et al. Effects of acupuncture on the levels of endothelin, TXB2, and 6-keto-PGF1 alpha in apoplexy patients. J Tradit Chin Med. 1999;19:39–43.PubMedGoogle Scholar
  18. 18.
    Loaiza LA, Yamaguchi S, Ito M, et al. Electro-acupuncture stimulation to muscle afferents in anesthetized rats modulates the blood flow to the knee joint through autonomic reflexes and nitric oxide. Auton Neurosci. 2002;97:103–9.CrossRefGoogle Scholar
  19. 19.
    Kaada B, Flatheim E, Woie L. Low-frequency transcutaneous nerve stimulation in mild/moderate hypertension. Clin Physiol. 1991;11:161–8.CrossRefGoogle Scholar
  20. 20.
    Gademan MGJ, Sun Y, Han L, et al. Rehabilitation: periodic somatosensory stimulation increases arterial baroreflex sensitivity in chronic heart failure patients. Int J Cardiol. 2011;152:237–41.CrossRefGoogle Scholar
  21. 21.
    Frederiks J, Swenne CA, Ghafoerkhan A, et al. Rhythmic sensory stimulation improves fitness by conditioning the autonomic nervous system. Neth Heart J. 2002;10:43–7.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43:1575–81.CrossRefGoogle Scholar
  23. 23.
    Taylor CE, Atkinson G, Willie CK, et al. Diurnal variation in the mechanical and neural components of the baroreflex. Hypertension. 2011;58:51–6.CrossRefGoogle Scholar
  24. 24.
    Gademan MG, Van Bommel RJ, Ypenburg C, et al. Biventricular pacing in chronic heart failure acutely facilitates the arterial baroreflex. Am J Physiol Heart Circ Physiol. 2008;295:H755–60.CrossRefGoogle Scholar
  25. 25.
    Frederiks J, Swenne CA, Ten Voorde BJ, et al. The importance of high-frequency paced breathing in spectral baroreflex sensitivity assessment. J Hypertens. 2000;18:1635–44.CrossRefGoogle Scholar
  26. 26.
    Swenne CA, Frederiks J, Fischer PH, et al. Noninvasive baroreflex sensitivity assessment in geriatric patients: feasibility, and role of the coherence criterion. Comput Cardiol. 2000;27:45–8.Google Scholar
  27. 27.
    Van de Vooren H, Gademan MGJ, Haest JCW, et al. Non-invasive baroreflex sensitivity assessment in heart failure patients with frequent episodes of non-sinus rhythm. Comput Cardiol. 2006;33:637–40.Google Scholar
  28. 28.
    Tanaka M, Sato M, Umehara S, et al. Influence of menstrual cycle on baroreflex control of heart rate: comparison with male volunteers. Am J Physiol Regul Integr Comp Physiol. 2003;285:R1091–7.CrossRefGoogle Scholar
  29. 29.
    Cervellin G, Lippi G. From music-beat to heart-beat: a journey in the complex interactions between music, brain and heart. Eur J Intern Med. 2011;22:371–4.CrossRefGoogle Scholar
  30. 30.
    Montinaro A. The musical brain: myth and science. World Neurosurg. 2010;73:442–53.CrossRefGoogle Scholar
  31. 31.
    Trappe HJ. The effects of music on the cardiovascular system and cardiovascular health. Heart. 2010;96:1868–71.CrossRefGoogle Scholar
  32. 32.
    Inesta C, Terrados N, Garcia D, et al. Heart rate in professional musicians. J Occup Med Toxicol. 2008;3:16.CrossRefGoogle Scholar
  33. 33.
    Sunderman LF. A study of some physiological differences between musicians and non-musicians; blood-pressure. J Soc Psychol. 1946;23:205–15.CrossRefGoogle Scholar
  34. 34.
    Valentine E, Evans C. The effects of solo singing, choral singing and swimming on mood and physiological indices. Br J Med Psychol. 2001;74:115–20.CrossRefGoogle Scholar
  35. 35.
    Clift SM, Hancox G. The perceived benefits of singing: findings from preliminary surveys of a university college choral society. J R Soc Promot Health. 2001;121:248–56.CrossRefGoogle Scholar
  36. 36.
    Schorr-Lesnick B, Teirstein AS, Brown LK, et al. Pulmonary function in singers and wind-instrument players. Chest. 1985;88:201–5.CrossRefGoogle Scholar
  37. 37.
    Zanesco A, Antunes E. Effects of exercise training on the cardiovascular system: pharmacological approaches. Pharmacol Ther. 2007;114:307–17.CrossRefGoogle Scholar
  38. 38.
    Pescatello LS, Franklin BA, Fagard R, et al. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36:533–53.CrossRefGoogle Scholar
  39. 39.
    Halliwill JR, Taylor JA, Hartwig TD, et al. Augmented baroreflex heart rate gain after moderate-intensity, dynamic exercise. Am J Physiol. 1996;270:R420–6.PubMedGoogle Scholar
  40. 40.
    Tirosh A, Afek A, Rudich A, et al. Progression of normotensive adolescents to hypertensive adults: a study of 26,980 teenagers. Hypertension. 2010;56:203–9.CrossRefGoogle Scholar
  41. 41.
    Bibbins-Domingo K, Pletcher MJ. Blood pressure matters, even during young adulthood. J Am Coll Cardiol. 2011;58:2404–5.CrossRefGoogle Scholar
  42. 42.
    Gray L, Lee IM, Sesso HD, et al. Blood pressure in early adulthood, hypertension in middle age, and future cardiovascular disease mortality: HAHS (Harvard Alumni Health Study). J Am Coll Cardiol. 2011;58:2396–403.CrossRefGoogle Scholar

Copyright information

© Springer Media / Bohn Stafleu van Loghum 2012

Authors and Affiliations

  • J. L. I. Burggraaf
    • 1
  • T. W. Elffers
    • 1
  • F. M. Segeth
    • 1
  • F. M. C. Austie
    • 1
  • M. B. Plug
    • 1
  • M. G. J. Gademan
    • 2
  • A. C. Maan
    • 1
  • S. Man
    • 1
  • M. de Muynck
    • 3
  • T. Soekkha
    • 3
  • A. Simonsz
    • 4
  • E. E. van der Wall
    • 1
  • M. J. Schalij
    • 1
  • C. A. Swenne
    • 1
    Email author
  1. 1.Department of CardiologyLeiden University Medical CenterLeidenthe Netherlands
  2. 2.Department of Public HealthAcademic Medical CentreAmsterdamthe Netherlands
  3. 3.Academy for Creative and Performing Arts, Faculty of HumanitiesLeiden UniversityLeidenthe Netherlands
  4. 4.Pre-university CollegeLeiden UniversityLeidenthe Netherlands

Personalised recommendations