Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Metaheuristics for the transit route network design problem: a review and comparative analysis

  • 239 Accesses

Abstract

This paper critically reviews applications of metaheuristics for solving the Transit Route Network Design Problem (TRNDP). A structured review is offered and prominent metaheuristics for tackling the TRNDP are evaluated, according to a benchmark network. The review findings yield a unified implementation framework, which contains common algorithmic components and different solution representations and methods, which are considered important for obtaining solutions of good quality. The paper concludes with identified gaps in research and opportunities for future research on the application of metaheuristic algorithms for solving the TRNDP.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Afandizadeh S, Khaksar H, Kalantari N (2013) Bus fleet optimization using genetic algorithm a case study of Mashhad. Int J Civ Eng 11(1):43–52

  2. Agrawal J, Mathew TV (2004) Transit route network design using parallel genetic algorithm. J Comput Civ Eng 18(3):248–256. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:3(248)

  3. Ahmed L, Mumford C, Kheiri A (2019) Solving urban transit route design problem using selection hyper-heuristics. Eur J Oper Res 274(2):545–559. https://doi.org/10.1016/j.ejor.2018.10.022

  4. Alt B, Weidmann U (2011) A stochastic multiple area approach for public transport network design. Public Transp 3(1):65–87. https://doi.org/10.1007/s12469-011-0042-0

  5. Amiripour S, Ceder A, Mohaymany A (2014a) Hybrid method for bus network design with high seasonal demand variation. J Transp Eng 140(6):04014015. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000669

  6. Amiripour SM, Ceder A, Mohaymany AS (2014b) Designing large-scale bus network with seasonal variations of demand. Transp Res C Emerg Technol 48:322–338. https://doi.org/10.1016/j.trc.2014.08.017

  7. Amiripour SM, Mohaymany AS, Ceder A (2014c) Optimal modification of urban bus network routes using a genetic algorithm. J Transp Eng 141(3):04014081. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000741

  8. Arbex RO, da Cunha CB (2015) Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm. Transp Res B Methodol 81:355–376. https://doi.org/10.1016/j.trb.2015.06.014

  9. Archetti C, Speranza MG (2014) A survey on matheuristics for routing problems. EURO J Comput Opt 2(4):223–246. https://doi.org/10.1007/s13675-014-0030-7

  10. Baaj MH, Mahmassani HS (1991) AI-based approach for transit route system planning and design. J Adv Transp 25(2):187–210. https://doi.org/10.1002/atr.5670250205

  11. Baaj MH, Mahmassani HS (1995) Hybrid route generation heuristic algorithm for the design of transit networks. Transp Res C Emerg Technol 3(1):31–50. https://doi.org/10.1016/0968-090X(94)00011-S

  12. Bagloee S, Ceder A (2011) Transit-network design methodology for actual-size road networks. Transp Res B Methodol 45(10):1787–1804. https://doi.org/10.1016/j.trb.2011.07.005

  13. Beltran B, Carrese S, Cipriani E, Petrelli M (2009) Transit network design with allocation of green vehicles: a genetic algorithm approach. Transp Res Part C Emerg Technol 17(5):475–483. https://doi.org/10.1016/j.trc.2009.04.008

  14. Bielli M, Caramia M, Carotenuto P (2002) Genetic algorithms in bus network optimization. Transp Res Part C Emerg Technol 10(1):19–34. https://doi.org/10.1016/S0968-090X(00)00048-6

  15. Blum C, Li X (2008) Swarm intelligence in optimization. In: Blum C, Merkle D (eds) Swarm intelligence. Springer, Berlin, pp 43–85

  16. Blum JJ, Mathew TV (2011) Intelligent agent optimization of urban bus transit system design. J Comput Civ Eng 25(5):357–369. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000095

  17. Buba AT, Lee LS (2016) Differential evolution for urban transit routing problem. J Comp Commun 4(14):11–25. https://doi.org/10.4236/jcc.2016.414002

  18. Buba AT, Lee LS (2018) A differential evolution for simultaneous transit network design and frequency setting problem. Expert Syst Appl 106:277–289. https://doi.org/10.1016/j.eswa.2018.04.011

  19. Byrne BF (1975) Public transportation line positions and headways for minimum user and system cost in a radial case. Transp Res 9(2):97–102. https://doi.org/10.1016/0041-1647(75)90044-1

  20. Byrne BF, Vuchic VR (1972) Public transportation line positions and headways for minimum cost. Traffic Flow Transp 347–360. http://trid.trb.org/view.aspx?id=132894

  21. Ceder A, Israeli Y (1998) User and operator perspectives in transit network design. Transp Res Rec J Transp Res Board 1623:3–7. https://doi.org/10.3141/1623-01

  22. Chakroborty P (2003) Genetic algorithms for optimal urban transit network design. Comput Aided Civ Infrastruct Eng 18(3):184–200. https://doi.org/10.1111/1467-8667.00309

  23. Chakroborty P, Dwivedi T (2002) Optimal route network design for transit systems using genetic algorithms. Eng Opt 34(1):83–100. https://doi.org/10.1080/03052150210909

  24. Chen Y, Yang S, Hu M, Wu YJ (2016) A reliability-based transit trip planning model under transit network uncertainty. Public Transp 8(3):477–496. https://doi.org/10.1007/s12469-016-0134-y

  25. Chew JSC, Lee LS (2012) A genetic algorithm for urban transit routing problem. Int J Mod Phys Conf Ser 09:411–421. https://doi.org/10.1142/S2010194512005491

  26. Chew JSC, Lee LS, Seow HV (2013) Genetic algorithm for biobjective urban transit routing problem. J Appl Math 698645:1–15. https://doi.org/10.1155/2013/698645

  27. Chien S, Yang Z, Hou E (2001) Genetic algorithm approach for transit route planning and design. J Transp Eng 127(3):200–207. https://doi.org/10.1061/(ASCE)0733-947X(2001)127:3(200)

  28. Cipriani E, Fusco G, Gori S, Petrelli M (2005) A procedure for the solution of the urban bus network design problem with elastic demand. Advanced OR and AI methods in transportation: Proc., 10th Meeting of the EURO Working Group on Transportation. Publishing House of Poznan Univ. of Technology, Poland, pp 681–685

  29. Cipriani E, Gori S, Petrelli M (2012) Transit network design: a procedure and an application to a large urban area. Transp Res Part C Emerg Technol 20(1):3–14. https://doi.org/10.1016/j.trc.2010.09.003

  30. Cooper IM, John MP, Lewis R, Mumford CL, Olden A (2014) Optimising large scale public transport network design problems using mixed-mode parallel multi-objective evolutionary algorithms. In: 2014 IEEE Congress on Evolutionary Computation. IEEE, New York, pp 2841–2848. https://doi.org/10.1109/cec.2014.6900362

  31. Crainic TG, Gendreau M, Potvin JY (2009) Intelligent freight-transportation systems: assessment and the contribution of operations research. Transp Res Part C Emerg Technol 17(6):541–557. https://doi.org/10.1016/j.trc.2008.07.002

  32. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26(1):29–41. https://doi.org/10.1109/3477.484436

  33. Duran J, Pradenas L, Parada V (2019) Transit network design with pollution minimization. Public Transp 11(1):189–210. https://doi.org/10.1007/s12469-019-00200-5

  34. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth int symposium on micro machine and human science. IEEE, New York, pp 39–43. https://doi.org/10.1109/MHS.1995.494215

  35. Eiben AE, Smith JE (2003) Introduction to evolutionary computing, 2nd edn. Springer, Berlin

  36. Fan W, Machemehl RB (2006a) Optimal transit route network design problem with variable transit demand: genetic algorithm approach. J Transp Eng 132(1):40–51. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:1(40)

  37. Fan W, Machemehl RB (2006b) Using a simulated annealing algorithm to solve the transit route network design problem. J Transp Eng 132(2):122–132. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(122)

  38. Fan W, Machemehl RB (2008) Tabu search strategies for the public transportation network optimizations with variable transit demand. Comput Aided Civ Infrastruct Eng 23(7):502–520. https://doi.org/10.1111/j.1467-8667.2008.00556.x

  39. Fan W, Machemehl R (2011) Bi-level optimization model for public transportation network redesign problem. Transp Res Rec 2263:151–162. https://doi.org/10.3141/2263-17

  40. Fan L, Mumford CL (2010) A metaheuristic approach to the urban transit routing problem. J Heuristics 16(3):353–372. https://doi.org/10.1007/s10732-008-9089-8

  41. Fan L, Mumford CL, Evans D (2009) A simple multi-objective optimization algorithm for the urban transit routing problem. In: IEEE Congress on Evolutionary Computation 2009, IEEE, New York, pp 1–7. http://doi.org/10.1109/CEC.2009.4982923

  42. Fang LYP, Yusof UK, Khalid MNA (2014) Artificial immune system for optimizing public bus transportation route during peak and off-peak hour. Aust J Basic Appl Sci 8(24):59–66

  43. Farahani RZ, Miandoabchi E, Szeto WY, Rashidi H (2013) A review of urban transportation network design problems. Eur J Oper Res 229(2):281–302. https://doi.org/10.1016/j.ejor.2013.01.001

  44. Feng X, Zhu X, Qian X, Jie Y, Ma F, Niu X (2019) A new transit network design study in consideration of transfer time composition. Transp Res D Transp Environ 66:85–94. https://doi.org/10.1016/j.trd.2018.03.019

  45. Feo TA, Resende MG (1995) Greedy randomized adaptive search procedures. J Glob Optim 6(2):109–133. https://doi.org/10.1007/BF01096763

  46. Gallo M, Montella B, D’Acierno L (2011) The transit network design problem with elastic demand and internalization of external costs: an application to rail frequency optimization. Transp Res Part C Emerg Technol 19(6):1276–1305. https://doi.org/10.1016/j.trc.2011.02.008

  47. Gattermann P, Harbering J, Schöbel A (2017) Line pool generation. Public Transp 9(1–2):7–32. https://doi.org/10.1007/s12469-016-0127-x

  48. Gendreau M, Potvin JY (2005) Metaheuristics in combinatorial optimization. Ann Oper Res 140(1):189–213. https://doi.org/10.1007/s10479-005-3971-7

  49. Glover F (1989) Tabu search—Part I. ORSA J Comput 1(3):190–206. https://doi.org/10.1287/ijoc.1.3.190

  50. Glover F (1990) Tabu search—Part II. ORSA J Comput 2(1):4–32. https://doi.org/10.1287/ijoc.2.1.4

  51. Guihaire V, Hao J-K (2008) Transit network design and scheduling: a global review. Transp Res Part A Policy Pract 42(10):1251–1273. https://doi.org/10.1016/j.tra.2008.03.011

  52. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology control and artificial intelligence. MIT Press, Cambridge

  53. Hu J, Shi X, Song J, Xu Y (2005) Optimal design for urban mass transit network based on evolutionary algorithms. In: Wang L, Chen K, Ong YS (eds) Advances in natural computation. Springer, Berlin, pp 1089–1100

  54. Huang D, Liu Z, Fu X, Blythe PT (2018) Multimodal transit network design in a hub-and-spoke network framework. Transportmetrica A Transp Sci 14(8):706–735. https://doi.org/10.1080/23249935.2018.1428234

  55. Ibarra-Rojas OJ, Delgado F, Giesen R, Muñoz JC (2015) Planning operation and control of bus transport systems: a literature review. Transp Res Part B Methodol 77:38–75. https://doi.org/10.1016/j.trb.2015.03.002

  56. Iliopoulou C, Tassopoulos I, Kepaptsoglou K, Beligiannis G (2019) Electric transit route network design problem: model and application. Transp Res Rec. https://doi.org/10.1177/0361198119838513

  57. Islam KA, Moosa IM, Mobin J, Nayeem MA, Rahman MS (2019) A heuristic aided Stochastic Beam Search algorithm for solving the transit network design problem. Swarm Evol Comput 46:154–170. https://doi.org/10.1016/j.swevo.2019.02.007

  58. Jha SB, Jha JK, Tiwari MK (2019) A multi-objective meta-heuristic approach for transit network design and frequency setting problem in a bus transit system. Comp Ind Eng 130:166–186. https://doi.org/10.1016/j.cie.2019.02.025

  59. Jiang Y, Szeto W, Ng T (2013) Transit network design: a hybrid enhanced artificial bee colony approach and a case study. Int J Transp Sci Technol 2(3):243–260. https://doi.org/10.1260/2046-0430.2.3.243

  60. John MP, Mumford CL, Lewis R (2014) An improved multi-objective algorithm for the urban transit routing problem. European conference on evolutionary computation in combinatorial optimization. Springer, Berlin, pp 49–60

  61. Kechagiopoulos PN, Beligiannis GN (2014) Solving the Urban Transit Routing Problem using a particle swarm optimization based algorithm. Appl Soft Comp 21:654–676. https://doi.org/10.1016/j.asoc.2014.04.005

  62. Kepaptsoglou K, Karlaftis M (2009) Transit Route Network Design Problem: review. J Transp Eng 135(8):491–505. https://doi.org/10.1061/(ASCE)0733-947X(2009)135:8(491)

  63. Khakbaz A, Shahandeh Nookabadi A, Nader Shetab Boushehri S (2017) Urban bus fleet routing in transportation network equipped with park-and-ride: a case study of Babol. Iran Transp 32(1):55–65. https://doi.org/10.3846/16484142.2017.1277551

  64. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680. https://doi.org/10.1126/science.220.4598.671

  65. Liu Y, Zhu N, Ma SF (2015) Simultaneous optimization of transit network and public bicycle station network. J Cent South Univ 22:1574–1584. https://doi.org/10.1007/s11771-015-2674-8

  66. López-Ramos F (2014) Integrating network design and frequency setting in public transportation networks: a survey. SORT-Stat Oper Res Trans 38(2):181–214

  67. Lučić P, Teodorović D (2003) Computing with bees: attacking complex transportation engineering problems. Int J Artif Intell Tools 12(03):375–394. https://doi.org/10.1142/S0218213003001289

  68. Mahdavi Moghaddam SH, Rao KR, Tiwari G, Biyani P (2019) Simultaneous bus transit route network and frequency setting search algorithm. J Transp Eng Part A Sys 145(4):04019011. https://doi.org/10.1061/JTEPBS.0000229

  69. Mandl CE (1979) Applied network optimization. Academic Press, New York

  70. Mauttone A, Urquhart ME (2009) A multi-objective metaheuristic approach for the TSransit Network Design Problem. Public Transp 1(4):253–273. https://doi.org/10.1007/s12469-010-0016-7

  71. Millonas M (1994) Swarms phase transitions and collective intelligence. In: Palaniswami M, Attikiouzel Y, Marks R, Fogel D, Fukuda T (eds) Computational intelligence: a dynamic system perspective. IEEE, New York

  72. Mumford CL (2004) Simple population replacement strategies for a steady-state multi-objective evolutionary algorithm. In: Deb K (ed) Genetic and evolutionary computation—GECCO 2004. Springer, Berlin, pp 1389–1400. https://doi.org/10.1007/978-3-540-24854-5_132

  73. Mumford CL (2013) New heuristic and evolutionary operators for the multi-objective urban transit routing problem. In: 2013 IEEE congress on evolutionary computation (CEC). IEEE, New York, pp 939–946. http://doi.org/10.1109/CEC.2013.6557668

  74. Mumford C (2016) Research on the urban transit routing problem (bus routing). https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/Outline.html. Accessed 15 Jan 2017

  75. Nayeem MA, Rahman MK, Rahman MS (2014) Transit network design by genetic algorithm with elitism. Transp Res Part C Emerg Technol 46:30–45. https://doi.org/10.1016/j.trc.2014.05.002

  76. Newell GF (1979) Some issues relating to the optimal design of bus routes. Transp Sci 13(1):20–35. https://doi.org/10.1287/trsc.13.1.20

  77. Ngamchai S, Lovell D (2003) Optimal time transfer in bus transit route network design using a genetic algorithm. J Transp Eng 129(5):510–521. https://doi.org/10.1061/(ASCE)0733-947X(2003)129:5(510)

  78. Nikolić M, Teodorović D (2013) Transit network design by bee colony optimization. Expert Syst Appl 40(15):5945–5955. https://doi.org/10.1016/j.eswa.2013.05.002

  79. Nikolić M, Teodorović D (2014) A simultaneous transit network design and frequency setting: computing with bees. Expert Syst Appl 41(16):7200–7209. https://doi.org/10.1016/j.eswa.2014.05.034

  80. Owais M, Osman MK, Moussa G (2016) Multi-objective transit route network design as set covering problem. IEEE Trans Intell Transp Syst 17(3):670–679. https://doi.org/10.1109/TITS.2015.2480885

  81. Pacheco J, Alvarez A, Casado S, González-Velarde JL (2009) A tabu search approach to an urban transport problem in northern Spain. Comput Oper Res 36(3):967–979. https://doi.org/10.1016/j.cor.2007.12.002

  82. Panigrahi BK, Shi Y, Lim MH (eds) (2011) Handbook of swarm intelligence: concepts principles and applications. Springer Science Business Media, Berlin

  83. Pattnaik SB, Mohan S, Tom VM (1998) Urban bus transit route network design using genetic algorithm. J Transp Eng 124(4):368–375. https://doi.org/10.1061/(ASCE)0733-947X(1998)124:4(368)

  84. Petrelli M (2004) A transit network design model for urban areas. WIT Trans Built Environ 75:163–172

  85. Pinelli F, Nair R, Calabrese F, Berlingerio M, Di Lorenzo G, Sbodio ML (2016) Data-driven transit network design from mobile phone trajectories. IEEE Trans Intell Transp Syst 17(6):1724–1733. https://doi.org/10.1109/TITS.2015.2496783

  86. Poorzahedy H, Safari F (2011) An ant system application to the bus network design problem: an algorithm and a case study. Public Transp 3(2):165–187. https://doi.org/10.1007/s12469-011-0046-9

  87. Potvin JY (2009) A review of bio-inspired algorithms for vehicle routing. In: Pereira FB, Tavares J (eds) Bio-inspired algorithms for the vehicle routing problem. Springer, Berlin, pp 1–34

  88. Pternea M, Kepaptsoglou K, Karlaftis MG (2015) Sustainable urban transit network design. Transp Res Part A Policy Pract 77:276–291. https://doi.org/10.1016/j.tra.2015.04.024

  89. Roca-Riu M, Estrada M, Trapote C (2012) The design of interurban bus networks in city centers. Transp Res Part A Policy Pract 46(8):1153–1165. https://doi.org/10.1016/j.tra.2012.05.011

  90. Sayadi MK, Hafezalkotob A, Naini SGJ (2013) Firefly-inspired algorithm for discrete optimization problems: an application to manufacturing cell formation. J Manuf Syst 32(1):78–84. https://doi.org/10.1016/j.jmsy.2012.06.004

  91. Szeto W, Jiang Y (2012) Hybrid artificial bee colony algorithm for transit network design. Transp Res Rec 2284:47–56. https://doi.org/10.3141/2284-06

  92. Szeto WY, Jiang Y (2014) Transit route and frequency design: bi-level modeling and hybrid artificial bee colony algorithm approach. Transp Res Part B Methodol 67:235–263. https://doi.org/10.1016/j.trb.2014.05.008

  93. Szeto WY, Wu Y (2011) A simultaneous bus route design and frequency setting problem for Tin Shui Wai Hong Kong. Eur J Oper Res 209(2):141–155. https://doi.org/10.1016/j.ejor.2010.08.020

  94. Talbi EG (2002) A taxonomy of hybrid metaheuristics. J Heuristics 8(5):541–564. https://doi.org/10.1023/A:1016540724870

  95. Talbi EG (2009) Metaheuristics: from design to implementation, vol 74. Wiley, Chicago

  96. Talbi EG (2015) Hybrid metaheuristics for multi-objective optimization. J Algorithms Comput Technol 9(1):41–63. https://doi.org/10.1260/1748-3018.9.1.41

  97. Talbi EG (2016) Combining metaheuristics with mathematical programming constraint programming and machine learning. Ann Oper Res 240(1):171–215. https://doi.org/10.1007/s10479-015-2034-y

  98. Tassopoulos IX, Beligiannis GN (2012) A hybrid particle swarm optimization based algorithm for high school timetabling problems. Appl Soft Comput 12(11):3472–3489. https://doi.org/10.1016/j.asoc.2012.05.029

  99. Tom VM, Mohan S (2003) Transit route network design using frequency coded genetic algorithm. J Transp Eng 129(2):186–195. https://doi.org/10.1061/(ASCE)0733-947X(2003)129:2(186)

  100. van Nes R, Bovy PH (2000) Importance of objectives in urban transit-network design. Transp Res Rec 1735(1):25–34. https://doi.org/10.3141/1735-04

  101. Walteros JL, Medaglia AL, Riaño G (2013) Hybrid algorithm for route design on bus rapid transit systems. Transp Sci 49(1):66–84. https://doi.org/10.1287/trsc.2013.0478

  102. Wirasinghe SC (1980) Nearly optimal parameters for a rail/feeder-bus system on a rectangular grid. Transp Res Part A Gen 14(1):33–40. https://doi.org/10.1016/0191-2607(80)90092-8

  103. Wu R, Wang S (2016) Discrete wolf pack search algorithm based transit network design. 7th IEEE International Conference on Software Eng and Service Science (ICSESS). IEEE, New York, pp 509–512

  104. Xiong Y, Schneider JB (1992) Transportation network design using a cumulative genetic algorithm and neural network. Transp Res Rec 1364: 37–44. http://onlinepubs.trb.org/Onlinepubs/trr/1992/1364/1364-005.pdf

  105. Xu G, Shi F, Wang P (2014) Model and algorithm of optimizing bus transit network based on line segment combination. Am Soc Civ Eng Reston. https://doi.org/10.1061/9780784413623.146

  106. Yan Y, Liu Z, Meng Q, Jiang Y (2013) Robust optimization model of bus transit network design with stochastic travel time. J Transp Eng 139(6):625–634. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000536

  107. Yang Z, Yu B, Cheng C (2007a) A parallel ant colony algorithm for bus network optimization. Comput Aided Civ Infrastruct Eng 22(1):44–55. https://doi.org/10.1111/j.1467-8667.2006.00469.x

  108. Yang C, Tu X, Chen J (2007b) Algorithm of marriage in honey bees optimization based on the wolf pack search. The 2007 int conf on intelligent pervasive computing. IEEE, New York, pp 462–467

  109. Yao B, Hu P, Lu X, Gao J, Zhang M (2014) Transit network design based on travel time reliability. Transp Res Part C Emerg Technol 43:233–248. https://doi.org/10.1016/j.trc.2013.12.005

  110. Yu B, Yang Z (2006) Model and algorithm for iterative design of bus network. In: Proc. 9th int. conf on the applications of advanced technologies in transportation, ASCE, Reston, pp 731–736

  111. Yu B, Yang Z, Cheng C, Liu C (2005) Optimizing bus transit network with parallel ant colony algorithm. In: Proceedings of the Eastern Asia Society for Transportation Studies, J-STAGE, Tokyo, pp 374–389. http://easts.info/on-line/proceedings_05/374.pdf

  112. Yu B, Yang Z-Z, Jin P-H, Wu S-H, Yao B-Z (2012) Transit route network design-maximizing direct and transfer demand density. Transp Res Part C Emerg Technol 22:58–75. https://doi.org/10.1016/j.trc.2011.12.003

  113. Zhao F, Gan A (2003) Optimization of transit network to minimize transfers. FDOT, Florida. http://trid.trb.org/view.aspx?id=697978

  114. Zhao F, Zeng X (2006a) Simulated annealing-genetic algorithm for transit network optimization. J Comput Civ Eng 20(1):57–68. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:1(57)

  115. Zhao F, Zeng X (2006b) Optimization of transit network layout and headway with a combined genetic algorithm and simulated annealing method. Eng Optim 38(6):701–722. https://doi.org/10.1080/03052150600608917

  116. Zhao F, Zeng X (2007) Optimization of user and operator cost for large-scale transit network. J Transp Eng 133(4):240–251. https://doi.org/10.1061/(ASCE)0733-947X(2007)133:4(240)

  117. Zhao F, Zeng X (2008) Optimization of transit route network vehicle headways and timetables for large-scale transit networks. Eur J Oper Res 186(2):841–855. https://doi.org/10.1016/j.ejor.2007.02.005

  118. Zhao F, Ubaka I, Gan A (2005) Transit network optimization: minimizing transfers and maximizing service coverage with an integrated simulated annealing and tabu search method. Transp Res Rec 1923:180–188. https://doi.org/10.1177/0361198105192300119

  119. Zhao H, Xu W, Jiang R (2015) The Memetic algorithm for the optimization of urban transit network. Expert Syst Appl 42(7):3760–3773. https://doi.org/10.1016/j.eswa.2014.11.056

Download references

Acknowledgements

This work is funded by the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) (Grant No: 1824).

Author information

Correspondence to Konstantinos Kepaptsoglou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iliopoulou, C., Kepaptsoglou, K. & Vlahogianni, E. Metaheuristics for the transit route network design problem: a review and comparative analysis. Public Transp 11, 487–521 (2019). https://doi.org/10.1007/s12469-019-00211-2

Download citation

Keywords

  • Transit Route Network Design
  • Urban Transit Routing Problem
  • Metaheuristics
  • Mandl’s bus network
  • Public Transport Network Design