Public Transport

, Volume 11, Issue 1, pp 189–210 | Cite as

Transit network design with pollution minimization

  • Javier Duran
  • Lorena PradenasEmail author
  • Victor Parada
Original Paper


A critical step in the design of urban transport networks is the determination of the routes and the frequencies of buses. This situation entails a highly combinatorial optimization problem with a complex computational solution, even for small instances. Several studies have addressed such a situation, minimizing travel times as the main objective. However, the growing trend toward the development of sustainable transport operations requires that the design of the network also considers the emissions of toxic gases that result from combustion, which leads to a new variant of this type of problem, called the pollution transit network design problem. In this paper, the problem is formulated as a biobjective mathematical programming model. Complex problem instances are proposed for this problem, and by using a multi-objective genetic algorithm, we approach the unimodal and bimodal version of the problem by taking into account the elastic demand between buses and cars. By using the proposed mathematical programming model and the genetic algorithm for small and large problem instances, respectively, we show that the generated pollutant emissions are drastically reduced without increasing travel times or costs.


Minimization of GHG emission Transit network Biobjective optimization Genetic algorithms Mathematical programming model 


Funding sources

This study was partially supported by the Grants: BASALCONICYT-FB0816 and ECOS/CONICYT, No. C13E04.


  1. Arbex RO, da Cunha CB (2015) Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm. Transp Res Part B Methodol 81:355–376. CrossRefGoogle Scholar
  2. Bagloee S, Ceder A (2011) Transit-network design methodology for actual-size road networks. Transp Res Part B Methodol 45(10):1787–1804. CrossRefGoogle Scholar
  3. Beltran B, Carrese S, Cipriani E, Petrelli M (2009) Transit network design with allocation of green vehicles: a genetic algorithm approach. Transp Res Part C Emerg Technol Artif Intell Transp Anal Approach Methods Appl 17(5):475–483. Google Scholar
  4. Borndörfer R, Grötschel M, Pfetsch ME (2007) A column-generation approach to line planning in public transport. Transp Sci 41(1):123–132. CrossRefGoogle Scholar
  5. Bravo M, Pradenas L, Parada V (2019) An evolutionary algorithm for the multi-objective pick-up and delivery pollution-routing problem. Int Trans Oper Res 26(1):302–317. CrossRefGoogle Scholar
  6. Cadarso L, Marín Á (2017) Improved rapid transit network design model: considering transfer effects. Ann Oper Res 258(2):547–567. CrossRefGoogle Scholar
  7. Cahon S, Melab N, Talbi E-G (2004) ParadisEO: a framework for the reusable design of parallel and distributed metaheuristics. J Heuristics 10(3):357–380. CrossRefGoogle Scholar
  8. Canca D, De-Los-Santos A, Laporte G, Mesa JA (2016) A general rapid network design, line planning and fleet investment integrated model. Ann Oper Res 246(1):127–144. CrossRefGoogle Scholar
  9. Cancela H, Mauttone A, Urquhart ME (2015) Mathematical programming formulations for transit network design. Transp Res Part B Methodol 77:17–37. CrossRefGoogle Scholar
  10. Ceder A (2015) Public transit planning and operation: modeling, practice and behavior, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  11. Chakroborty P (2003) Genetic algorithms for optimal urban transit network design. Comput Aided Civ Infrastruct Eng 18:184–200. CrossRefGoogle Scholar
  12. Demir E, Bektaş T, Laporte G (2014) A review of recent research on green road freight transportation. Eur J Oper Res 237(3):775–793. CrossRefGoogle Scholar
  13. Farahani RZ, Miandoabchi E, Szeto WY, Rashidi H (2013) A review of urban transportation network design problems. Eur J Oper Res 229(2):281–302. CrossRefGoogle Scholar
  14. Gallo M, Montella B, D’Acierno L (2011) The transit network design problem with elastic demand and internalisation of external costs: an application to rail frequency optimisation. Transp Res Part C Emerg Technol 19(2):1276–1305. CrossRefGoogle Scholar
  15. GAMS Development Corporation (2014) General Algebraic Modeling System (GAMS) Release 24.3.3. Washington, DCGoogle Scholar
  16. Guihaire V, Hao J-K (2008) Transit network design and scheduling: a global review. Transp Res Part A Policy Pract 42(10):1251–1273. CrossRefGoogle Scholar
  17. Hutter F, Stuetzle T, Leyton-Brown K, Hoos HH (2009) ParamILS: an automatic algorithm configuration framework. J Artif Intell Res 36:267–306. CrossRefGoogle Scholar
  18. Jiménez F, Román A (2016) Urban bus fleet-to-route assignment for pollutant emissions minimization. Transp Res Part E Logist Transp Rev 85:120–131. CrossRefGoogle Scholar
  19. John MP, Mumford CL, Lewis R (2014) An improved multi-objective algorithm for the urban transit routing problem. In: Blum C, Ochoa G (eds) Evolutionary computation in combinatorial optimisation. EvoCOP 2014. Lecture Notes in Computer Science, vol 8600. Springer, Berlin, pp 49–60. Google Scholar
  20. Kepaptsoglou K, Karlaftis M (2009) Transit route network design problem: review. J Transp Eng 135(8):491–505. CrossRefGoogle Scholar
  21. Khan OA (2007). Modelling passenger mode choice behaviour using computer aided stated preference data (Thesis). Queensland University of TechnologyGoogle Scholar
  22. Lin C, Choy KL, Ho GTS, Chung SH, Lam HY (2014) Survey of green vehicle routing problem: past and future trends. Expert Syst Appl 41(4):1118–1138. CrossRefGoogle Scholar
  23. Magnanti TL, Wong RT (1984) Network design and transportation planning: models and algorithms. Transp Sci 18(1):1–55. CrossRefGoogle Scholar
  24. Mandl CE (1980) Evaluation and optimization of urban public transportation networks. Eur J Oper Res 5(6):396–404. CrossRefGoogle Scholar
  25. Mauttone A, Urquhart ME (2010) A multi-objective metaheuristic approach for the transit network design problem. Public Transp 1(4):253–273. CrossRefGoogle Scholar
  26. Miandoabchi E, Farahani RZ, Dullaert W, Szeto WY (2012) Hybrid evolutionary metaheuristics for concurrent multi-objective design of urban road and public transit networks. Netw Spat Econ 12(3):441–480. CrossRefGoogle Scholar
  27. Mumford CL (2013) New heuristic and evolutionary operators for the multi-objective urban transit routing problem. In: 2013 IEEE congress on evolutionary computation. IEEE, pp 939–946.
  28. Newell G (1979) Some issues relating to the optimal design of bus routes. Transp Sci 13(1):20–35. CrossRefGoogle Scholar
  29. Nikolić M, Teodorović D (2014) A simultaneous transit network design and frequency setting: computing with bees. Expert Syst Appl 41(16):7200–7209. CrossRefGoogle Scholar
  30. Patriksson M (2015) The traffic assignment problem: models and methods. VSP, UtrechtGoogle Scholar
  31. Pérez JC, Carrillo MH, Montoya-Torres JR (2015) Multi-criteria approaches for urban passenger transport systems: a literature review. Ann Oper Res 226(1):69–87. CrossRefGoogle Scholar
  32. Pradenas L, Oportus B, Parada V (2013) Mitigation of greenhouse gas emissions in vehicle routing problems with backhauling. Expert Syst Appl 40(8):2985–2991. CrossRefGoogle Scholar
  33. Pternea M, Kepaptsoglou K, Karlaftis MG (2015) Sustainable urban transit network design. Transp Res Part A Policy Pract 77:276–291. CrossRefGoogle Scholar
  34. Sanchez M, Pradenas L, Deschamps J-C, Parada V (2016) Reducing the carbon footprint in a vehicle routing problem by pooling resources from different companies. NETNOMICS Econ Res Electron 17(1):29–45. CrossRefGoogle Scholar
  35. Sbihi A, Eglese RW (2010) Combinatorial optimization and Green Logistics. Ann Oper Res 175(1):159–175. CrossRefGoogle Scholar
  36. Schöbel A, Scholl S (2006) Line planning with minimal traveling time. Accessed 14 Aug 15
  37. Sheffi Y (1985) Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice Hall, Englewood CliffsGoogle Scholar
  38. Spiess H, Florian M (1989) Optimal strategies: a new assignment model for transit networks. Transp Res Part B Methodol 23(2):83–102. CrossRefGoogle Scholar
  39. Talbi E-G (2009) Metaheuristics: from design to implementation. Wiley, New YorkCrossRefGoogle Scholar
  40. Toth P, Vigo D (2014) Vehicle routing, MOS-SIAM series on optimization. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  41. US EPA, C.C.D. (2014). U.S. Greenhouse Gas Inventory Report. Accessed 18 Sep 15
  42. Vuchic VR (2005) Urban transit: operations, planning and economics, 1st edn. Wiley, HobokenGoogle Scholar
  43. Wan QK, Lo HK (2003) A mixed integer formulation for multiple-route transit network design. J Math Model Algorithms 2(4):299–308. CrossRefGoogle Scholar
  44. Wan QK, Lo HK (2009) Congested multimodal transit network design. Public Transp 1(3):233–251. CrossRefGoogle Scholar
  45. Wang J-Y, Lin C-M (2010) Mass transit route network design using genetic algorithm. J Chin Inst Eng 33(2):301–315. CrossRefGoogle Scholar
  46. Yen JY (1971) Finding the K shortest loopless paths in a network. Manag Sci 17(11):712–716CrossRefGoogle Scholar
  47. Zhang L, Yang H, Wu D, Wang D (2014) Solving a discrete multimodal transportation network design problem. Transp Res Part C Emerg Technol 49:73–86. CrossRefGoogle Scholar
  48. Zhao H, Xu W, Jiang R (2015) The Memetic algorithm for the optimization of urban transit network. Expert Syst Appl 42(7):3760–3773. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería IndustrialUniversidad de ConcepciónConcepciónChile
  2. 2.Departamento de Ingeniería InformáticaUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations