Advertisement

Fare discrimination and daily demand distribution in the BRT system in Bogotá

  • Luis A. Guzman
  • Carlos A. Moncada
  • Santiago Gómez
Case Study and Application
  • 1 Downloads

Abstract

Bogotá transport authority changed Bus Rapid Transit (Transmilenio) fares in August 2012 to manage congestion, particularly during peak hours. They reduced fares and implemented fare discrimination between peak and off-peak hours to balance demand and make the system more affordable. To estimate the variation in the relative distribution of daily demand between peak and off-peak hours, we used information pertaining to passenger demand on working days. Our main data source was the number of entrances into Transmilenio stations daily between 2011 and 2013. The data before the fare intervention was gathered between March 2011 and July 2012. Post intervention data was gathered between August 2012 and December 2013. We assumed that the users’ observable characteristics did not change either before or after the intervention was carried out. The fares decreased from a flat fare of COP 1750 (1 USD = 1780 COP in August 2012) to COP 1700 in peak hours and to COP 1400 in off-peak hours. This paper proposes a fixed effects model to estimate the effect of fare reduction in the ratio between peak and off-peak ridership hours. The results suggest that fare reduction produced changes in demand behaviour between peak and off-peak hours, reducing the peak to off-peak demand ratio (P/oP) by around 9%. This change has different levels of impact depending on the income levels associated with each Transmilenio station, with a stronger impact in low-income zones.

Keywords

Pricing policies Peak-problem Public transport fares Fare impact assessment Bogotá Transmilenio 

References

  1. Batarce M, Muñoz JC, Ortúzar JdD (2016) Valuing crowding in public transport: implications for cost-benefit analysis. Transp Res Part A Policy Pract 91:358–378CrossRefGoogle Scholar
  2. CCB (2017) Observatorio de Movilidad de Bogotá. Balance de Movilidad 2007–2016. In: Reporte anual de Movilidad 2016. Cámara de Comercio de Bogotá, Universidad de los Andes, Bogotá. ISSN 2027-209X. http://hdl.handle.net/11520/19561
  3. Cirillo C, Liu Y (2015) Measuring transit service impacts on vehicle ownership and use. Public Transport 7(2):203–222CrossRefGoogle Scholar
  4. Cirillo C, Serulle NU (2016) Transportation needs of low income population: a policy analysis for the Washington D.C. metropolitan region. Public Transport 8(1):103–123CrossRefGoogle Scholar
  5. Cullinane S (2002) The relationship between car ownership and public transport provision: a case study of Hong Kong. Transp Policy 9(1):29–39CrossRefGoogle Scholar
  6. Dargay J, Gately D (1997) The demand for transportation fuels: imperfect price-reversibility? Transp Res Part B 31(1):71–82CrossRefGoogle Scholar
  7. Gilbert A (2008) Bus rapid transit: is Transmilenio a miracle cure? Transport Rev 28(4):439–467CrossRefGoogle Scholar
  8. Glaister S (1974) Generalised consumer surplus and public transport pricing. Econ J 84(336):849–867CrossRefGoogle Scholar
  9. Guerra G, Bocarejo JP (2013) Congestion cost in mass transit systems; pricing and investment policy implications—case study: Bogota’s BRT system. In: 13th world conference on transportation research, Rio de JaneiroGoogle Scholar
  10. Guzman LA, Oviedo D, Bocarejo JP (2017) City profile: the Bogotá metropolitan area that never was. Cities 60(Part A):202–215CrossRefGoogle Scholar
  11. Haywood L, Koning M (2015) The distribution of crowding costs in public transport: new evidence from Paris. Transp Res Part A Policy Pract 77:182–201CrossRefGoogle Scholar
  12. Hensher DA (2008) Assessing systematic sources of variation in public transport elasticities: some comparative warnings. Transp Res Part A 42(7):1031–1042Google Scholar
  13. Hidalgo D, Pereira L, Estupiñán N, Jiménez PL (2013) TransMilenio BRT system in Bogota, high performance and positive impact—main results of an ex-post evaluation. Res Transp Econ 39(1):133–138CrossRefGoogle Scholar
  14. Jara-Díaz SR, Gschwender A, Ortega M (2014) The impact of a financial constraint on the spatial structure of public transport services. Transportation 41(1):21–36CrossRefGoogle Scholar
  15. Kash G, Hidalgo D (2014) The promise and challenges of integrating public transportation in Bogotá, Colombia. Public Transport 6(1):107–135CrossRefGoogle Scholar
  16. Litman T (2012) Transit price elasticities and cross-elasticities. Victoria Transport Policy Institute, Victoria. http://www.vtpi.org/tranelas.pdf
  17. McCollom BE, Pratt RH (2004) Transit pricing and fares, traveler response to transportation system change, chap 12. In: Report 95. TCRP report. http://onlinepubs.trb.org/onlinepubs/tcrp/tcrp_rpt_95c12.pdf
  18. Monchambert G, Haywood L, Koning M (2017) Crowding in public transport: who cares and why? Transp Res Part A Policy Pract 100:215–227CrossRefGoogle Scholar
  19. Oum TH, Waters WG, Yong J (1992) Concepts of price elasticities of transport demand and recent empirical estimates. J Transport Econ Policy 26(2):139–154Google Scholar
  20. Panzar JC (1976) A neoclassical approach to peak load pricing. Bell J Econ 7(2):521–530CrossRefGoogle Scholar
  21. Paulley N, Balcombe R, Mackett R, Titheridge H, Preston J, Wardman M, Shires J, White P (2006) The demand for public transport: the effects of fares, quality of service, income and car ownership. Transp Policy 13(4):295–306CrossRefGoogle Scholar
  22. Prud’homme R, Koning M, Lenormand L, Fehr A (2012) Public transport congestion costs: the case of the Paris subway. Transp Policy 21:101–109CrossRefGoogle Scholar
  23. PTEG (2002) Overcrowding on public transport, vol I. Passenger Transport Executive Group, House of Commons Transport Select Committee, London. https://publications.parliament.uk/pa/cm200203/cmselect/cmtran/201/201.pdf
  24. SDM (2016) Encuesta de Movilidad de Bogotá 2015, Cartilla final. Secretaría Distrital de Movilidad de Bogotá, Secretaría de Movilidad de Bogotá. http://www.movilidadbogota.gov.co/web/?q=node/1990
  25. Tirachini A, Hensher DA, Rose JM (2013) Crowding in public transport systems: effects on users, operation and implications for the estimation of demand. Transp Res Part A Policy Pract 53:36–52CrossRefGoogle Scholar
  26. Vickrey WS (1963) Pricing in urban and suburban transport. Am Econ Rev 53(2):452–465Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Luis A. Guzman
    • 1
  • Carlos A. Moncada
    • 2
  • Santiago Gómez
    • 3
  1. 1.Grupo de Sostenibilidad Urbana y Regional, SURUniversidad de los AndesBogotáColombia
  2. 2.Programa de Investigación en Tránsito y TransporteUniversidad Nacional de ColombiaBogotáColombia
  3. 3.Facultad de EconomíaUniversidad de los AndesBogotáColombia

Personalised recommendations