Public Transport

, Volume 9, Issue 1–2, pp 115–135 | Cite as

Passenger routing for periodic timetable optimization

  • Ralf Borndörfer
  • Heide Hoppmann
  • Marika Karbstein
Original Paper

Abstract

The task of periodic timetabling is to determine trip arrival and departure times in a public transport system such that travel and transfer times are minimized. This paper investigates periodic timetabling models with integrated passenger routing. We show that different routing models can have a huge influence on the quality of the entire system: Whatever metric is applied, the performance ratios of timetables w.r.t. different routing models can be arbitrarily large. Computations on a real-world instance for the city of Wuppertal substantiate the theoretical findings. These results indicate the existence of untapped optimization potentials that can be used to improve the efficiency of public transport systems by integrating passenger routing.

Keywords

Passenger routing Periodic timetabling Public transport 

Mathematics Subject Classification

90B06 90C11 90C27 

Notes

Acknowledgments

We thank the editors and two anonymous referees for valuable suggestions that improved the presentation of this paper.

References

  1. Borndörfer R, Grötschel M, Pfetsch ME (2007) A column-generation approach to line planning in public transport. Transp Sci 41(1):123–132. http://opus.kobv.de/zib/volltexte/2005/852/, ZIB Report 05-18
  2. Borndörfer R, Karbstein M (2012) A direct connection approach to integrated line planning and passenger routing. In: Delling D, Liberti L (eds) ATMOS 2012—12th workshop on algorithmic approaches for transportation modelling, optimization, and systems, vol 25, pp 47–57. doi:10.4230/OASIcs.ATMOS.2012.47
  3. Fu Q, Liu R, Hess S (2012) A review on transit assignment modelling approaches to congested networks: a new perspective. Proc Soc Behav Sci 54:1145–1155CrossRefGoogle Scholar
  4. Kinder M (2008) Models for periodic timetabling. Diploma thesis, Technische Universtität BerlinGoogle Scholar
  5. Liebchen C (2006) Periodic timetable optimization in public transport. Ph.D. thesis, Technische Universtität Berlin. http://www.dissertation.de
  6. Lindner T (2000) Train schedule optimization in public rail transport. Ph.D. thesis, Technische Universtität BraunschweigGoogle Scholar
  7. Lübbe J (2009) Passagierrouting und Taktfahrplanoptimierung. Diploma thesis, Technische Universtität BerlinGoogle Scholar
  8. Nachtigall K (1998) Periodic network optimization and fixed interval timetables. Ph.D. thesis, Deutsches Zentrum für Luft- und Raumfahrt, Institut für Flugführung, BraunschweigGoogle Scholar
  9. Schmidt M (2012) Integrating routing decisions in network problems. Ph.D. thesis, Universität GöttingenGoogle Scholar
  10. Schmidt M, Schöbel A (2014) Timetabling with passenger routing. OR Spectrum, pp 1–23. doi:10.1007/s00291-014-0360-0
  11. Schöbel A, Scholl S (2006) Line planning with minimal traveling time. In: Kroon LG, Möhring RH (eds) 5th workshop on algorithmic methods and models for optimization of railways (ATMOS’05), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, OpenAccess Series in Informatics (OASIcs), vol 2. doi:10.4230/OASIcs.ATMOS.2005.660, http://drops.dagstuhl.de/opus/volltexte/2006/660
  12. Sels P, Dewilde T, Cattrysse D, Vansteenwegen P (2016) Reducing the passenger travel time in practice by the automated construction of a robust railway timetable. Transp Res Part B Methodol 84:124–156. doi:10.1016/j.trb.2015.12.007
  13. Serafini P, Ukovich W (1989) A mathematical model for periodic scheduling problems. SIAM J Discrete Math 2(4):550–581CrossRefGoogle Scholar
  14. Siebert M, Goerigk M (2013) An experimental comparison of periodic timetabling models. Comput Oper Res 40(10):2251–2259CrossRefGoogle Scholar
  15. van der Hurk E, Kroon L, Marti G, Vervest P (2013) Deduction of passengers’ route choice from smart card data. In: 2013 16th international IEEE conference on intelligent transportation systems (ITSC), pp 797–802. doi:10.1109/ITSC.2013.6728329

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Zuse-Institute BerlinBerlinGermany

Personalised recommendations