Public Transport

, Volume 5, Issue 1–2, pp 3–23 | Cite as

Rapid branching

  • Ralf Borndörfer
  • Andreas Löbel
  • Markus Reuther
  • Thomas Schlechte
  • Steffen Weider
Original Paper

Abstract

We propose rapid branching (RB) as a general branch-and-bound heuristic for solving large scale optimization problems in traffic and transport. The key idea is to combine a special branching rule and a greedy node selection strategy in order to produce solutions of controlled quality rapidly and efficiently. We report on three successful applications of the method for integrated vehicle and crew scheduling, railway track allocation, and railway vehicle rotation planning.

Keywords

Large scale optimization Rapid branching Column generation 

References

  1. Applegate D, Bixby R, Chvátal V, Cook W (1995) Finding cuts in the TSP (a preliminary report). Technical report, Center for Discrete Mathematics and Theoretical Computer Science (DIMACS). DIMACS Technical Report 95-05 Google Scholar
  2. Beale EML, Forrest JJH (1976) Global optimization using special ordered sets. Math Program 10:52–69 CrossRefGoogle Scholar
  3. Beale E, Tomlin J (1970) Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables. In: Lawrence J (ed) Proceedings of the 5th international operations research conference. Tavistock Publications, London, pp 447–454 Google Scholar
  4. Borndörfer R, Schlechte T (2007) Models for railway track allocation. In: Liebchen C, Ahuja RK, Mesa JA (eds) ATMOS 2007—7th workshop on algorithmic approaches for transportation modeling, optimization, and systems, Dagstuhl seminar proceedings. internationales begegnungs- und forschungszentrum für informatik (IBFI), Schloss Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2007/1170 Google Scholar
  5. Borndörfer R, Grötschel M, Lukac S, Mitusch K, Schlechte T, Schultz S, Tanner A (2006) An auctioning approach to railway slot allocation. Compet Regul Netw Ind 1(2):163–196. ZIB Report 05-45 at http://opus.kobv.de/zib/volltexte/2005/878/ Google Scholar
  6. Borndörfer R, Löbel A, Weider S (2008) A bundle method for integrated multi-depot vehicle and duty scheduling in public transit. In: Hickman M, Mirchandani P, VoßS (eds) Computer-aided systems in public transport. Lecture notes in economics and mathematical systems, vol 600. Springer, Berlin, pp 3–24. ZIB Report 04-14 at http://opus.kobv.de/zib/volltexte/2004/790/ CrossRefGoogle Scholar
  7. Borndörfer R, Grötschel M, Jäger U (2010a) Planning problems in public transit. In: Grötschel M, Lucas K, Mehrmann V (eds) Production factor mathematics. Springer, Berlin Heidelberg, pp 95–122, acatech. ZIB Report 09-13 CrossRefGoogle Scholar
  8. Borndörfer R, Schlechte T, Weider S (2010b) Railway track allocation by rapid branching. In: Erlebach T, Lübbecke M (eds) Proceedings of the 10th workshop on algorithmic approaches for transportation modelling, optimization, and systems. OpenAccess series in informatics (OASIcs), Dagstuhl, Germany, vol 14, pp 13–23. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik Google Scholar
  9. Borndörfer R, Reuther M, Schlechte T, Weider S (2011) A hypergraph model for railway vehicle rotation planning. In: Caprara A, Kontogiannis S (eds) 11th workshop on algorithmic approaches for transportation modelling, optimization, and systems. OpenAccess series in informatics (OASIcs), Dagstuhl, Germany, vol 20, pp 146–155. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik Google Scholar
  10. Cambini R, Gallo G, Scutellà M (1997) Flows on hypergraphs. Math Program, Ser B 78(2):195–217 CrossRefGoogle Scholar
  11. Caprara A, Toth P, Fischetti M (2000) Algorithms for the set covering problem. Ann Oper Res 98(1–4):353–371 CrossRefGoogle Scholar
  12. Caprara A, Monaci M, Toth P, Guida PL (2006) A Lagrangian heuristic algorithm for a real-world train timetabling problem. Discrete Appl Math 154(5):738–753 CrossRefGoogle Scholar
  13. Eckstein J, Nediak M (2007) Pivot, cut, and dive: a heuristic for 0-1 mixed integer programming. J Heuristics 13(5):471–503 CrossRefGoogle Scholar
  14. Erol B, Klemenz M, Schlechte T, Schultz S, Tanner A (2008) TTPlib 2008—a library for train timetabling problems. In: Tomii A, Allan J, Arias E, Brebbia C, Goodman C, Rumsey A, Sciutto G (eds) Computers in railways XI. WIT Press, Southampton Google Scholar
  15. Fischer F, Helmberg C (2010) Dynamic graph generation and dynamic rolling horizon techniques in large scale train timetabling. In: Erlebach T, Lübbecke M (eds) Proceedings of the 10th workshop on algorithmic approaches for transportation modelling, optimization, and systems. OpenAccess series in informatics (OASIcs), Dagstuhl, Germany, vol 14, pp 45–60. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik Google Scholar
  16. Fischer F, Helmberg C, Janßen J, Krostitz B (2008) Towards solving very large scale train timetabling problems by Lagrangian relaxation. In: Fischetti M, Widmayer P (eds) ATMOS 2008—8th workshop on algorithmic approaches for transportation modeling, optimization, and systems, Dagstuhl, Germany. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Germany Google Scholar
  17. Giacco GL, D’Ariano A, Pacciarelli D (2011) Rolling stock rostering optimization under maintenance constraints. In: Proceedings of the 2nd international conference on models and technology for intelligent transportation systems, Leuven, Belgium, pp 1–5. MT-ITS 2011 Google Scholar
  18. IVU Plattform (2008). Sequentielle oder Integrierte Optimierung? IVU Plattform. http://www.ivu.de/fileadmin/ivu/pdf/kundenzeitung/ger/2008/PlattformZtg-0802D-web1865.pdf
  19. Kiwiel KC (1995) Approximation in proximal bundle methods and decomposition of convex programs. J Optim Theory Appl 84(3):529–548 CrossRefGoogle Scholar
  20. König FG (2009) Sorting with objectives—graph theoretic concepts in industrial optimization. Doctoral thesis, Technische Universität Berlin Google Scholar
  21. Löbel A (1997) Optimal vehicle scheduling in public transit. Shaker Verlag, Aachen. Ph.D. thesis, Technische Universität Berlin Google Scholar
  22. Lübbecke M, Desrosiers J (2005) Selected topics in column generation. Oper Res 53(6):1007–1023 CrossRefGoogle Scholar
  23. Lusby R, Larsen J, Ehrgott M, Ryan D (2011) Railway track allocation: models and methods. OR Spektrum 33(4):843–883 CrossRefGoogle Scholar
  24. Maróti G (2006) Operations research models for railway rolling stock planning. PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands Google Scholar
  25. Schlechte T (2012) Railway track allocation: models and algorithms. Doctoral thesis, Technische Universität Berlin Google Scholar
  26. Subramanian R, Sheff R, Quillinan J, Wiper D, Marsten R (1994) Coldstart: fleet assignment at delta air lines. Interfaces 24(1):104–120 CrossRefGoogle Scholar
  27. Wedelin D (1995) An algorithm for a large scale 0-1 integer programming with application to airline crew scheduling. Ann Oper Res 57:283–301 CrossRefGoogle Scholar
  28. Weider S (2007) Integration of vehicle and duty scheduling in public transport. PhD thesis, TU, Berlin. http://opus.kobv.de/tuberlin/volltexte/2007/1624/

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ralf Borndörfer
    • 1
  • Andreas Löbel
    • 1
  • Markus Reuther
    • 1
  • Thomas Schlechte
    • 1
  • Steffen Weider
    • 1
  1. 1.Konrad-Zuse-Zentrum BerlinBerlinGermany

Personalised recommendations