Advertisement

Public Transport

, Volume 1, Issue 1, pp 5–20 | Cite as

Automated timetable design for demand-oriented service on suburban railways

  • Thomas AlbrechtEmail author
Original Paper

Abstract

Economic and attractive operation of suburban railways can only be realised by flexibilisation of headways, adaptation of the network and capacity of the different lines. Under those circumstances, the computation of optimal operation programmes is very complex. This contribution presents a two-level approach (computation of transport offer, timetable design) and shows the results obtained from fully-automatic offer planning and timetabling for a suburban railway.

Keywords

Timetabling Flexible operation Optimisation Genetic Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht T (2004) Ein Beitrag zur Nutzbarmachung Genetischer Algorithmen für die optimale Steuerung und Planung eines flexiblen Stadtschnellbahnbetriebs. PhD thesis, Dresden University of Technology Google Scholar
  2. Assis WO, Milani BEA (2004) Generation of optimal schedules for metro lines using model predictive control. Automatica 40:1397–1404 CrossRefGoogle Scholar
  3. Ceder A (2001) Efficient timetabling and vehicle scheduling for public transport. In: Voß S, Daduna J (eds) Computer-aided scheduling of public transport. Springer, Brelin, pp 37–52 Google Scholar
  4. Cury J, Gomide F, Mendes M (1980) A methodology for generation of optimal schedules for an underground railway system. IEEE Trans Automat Contr 25(2):217–222 CrossRefGoogle Scholar
  5. Daduna J, Schneidereit G, Voß S (2006) Passenger information systems in public mass transit: Where we are and where we go. In: Proceedings of the 10th international conference on computer-aided scheduling of public transport (CASPT) Google Scholar
  6. Glück H (1973) Die Optimierung von Triebfahrzeugumlaufplänen bei großen Zugzahlen mit Hilfe elektronischer Datenverarbeitungsanlagen. Eisenbahntech Rundsch 9:354–363 Google Scholar
  7. Goldberg DE (1989) Genetic algorithms in search, optimisation and machine learning. Reading, Addison-Wesley Google Scholar
  8. Grega W (1993) Decomposition approach to the public transport scheduling problem. Automatica 29(3):745–750 CrossRefGoogle Scholar
  9. Hansen IA, Pachl J (eds) (2008) Railway timetable and traffic. Eurailpress, Hamburg Google Scholar
  10. Kwan R, Mistry P (eds) (2003) A co-evolutionary algorithm for train timetabling. In: IEEE congress on evolutionary computation, pp 2142–2148 Google Scholar
  11. Lehner F (1950) Menge, Arbeit, Leistung und Wirkungsgrad im Verkehr. Verkehr Tech 1(2):42–45 Google Scholar
  12. Minciardi R, Paolucci M, Pesenti R (1995) Generating optimal schedules for an underground railway line. In: 34th IEEE conference on decision and control, pp 4082–4085 Google Scholar
  13. Osuna EE, Newell GF (1972) Control strategies for an idealized public transportation system. Transp Sci 6:52–72 CrossRefGoogle Scholar
  14. Scholz S, Albrecht T (2006) ALFa—a software tool for optimal scheduling of demand oriented train services. In: Allan J, Brebbia CA, Rumsey AF, Sciutto G, Sone S, Goodman CJ (eds) Computers in railways, X. WIT, Southampton, pp 541–550 CrossRefGoogle Scholar
  15. Scholz S, Strobel H, Oettich S (2003) Demand-driven automated urban rapid rail transit: A new approach to the assessment of the operational efficiency. In: APM’03, Proceedings of the 9th international conference on automated people movers, Singapore Google Scholar
  16. Skolicki Z, De Jong K (2004) Improving evolutionary algorithms with multi-representation island models. In: Yao X, Burke E, Lozano JA, Smith J, Merelo-Guervos JJ, Bullinaria JA, Rowe J, Tino P, Kaban A, Schwefel H-P (eds) Parallel problem solving from nature VIII. Springer, Berlin, pp 420–429 Google Scholar
  17. Strobel H (2001) Die Potenziale automatischer und flexibler Stadtschnellbahnen. In: Jahrbuch des Bahnwesens. Hestra, Darmstadt, pp 106–118 Google Scholar
  18. Strobel H, Schütte J (2004) Optimum application of automated systems. In: 2nd UITP metropolitan railways conference “Converting conventional metro lines into automated operation” Google Scholar
  19. Wegele S, Schnieder E (2004) Dispatching of train operations using genetic algorithms. In: 9th international conference of computer-aided scheduling of public transport, San Diego Google Scholar
  20. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4:65–85 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Dresden University of TechnologyDresdenGermany

Personalised recommendations