Tijdschrift voor Kindergeneeskunde

, Volume 82, Issue 1, pp 26–34

Genetische oorzaken van kleine lengte

Article
  • 132 Downloads

Samenvatting

De volwassen lengte wordt voor het grootste deel bepaald door genetische factoren. Veel van deze factoren hebben een klein effect op de lengtegroei. In het diagnostisch proces bij een groeiachterstand is het vooralsnog alleen mogelijk onderzoek te doen naar de erfelijke factoren die juist een groot effect hebben. Alvorens hiertoe over te gaan, is het van belang om via anamnese, familieanamnese, lichamelijk onderzoek en eventueel radiologisch onderzoek de groeiachterstand goed te karakteriseren. Daarbij is het van belang te letten op lichaamsproporties, op dysmorfe kenmerken en/of aangeboren afwijkingen en op het begin van de groeiachterstand (preof postnataal). Bij afwijkende lichaamsproporties (met name korte ledematen ten opzichte van de romp) bestaat er een verdenking op een skeletdysplasie, bij dysmorfe kenmerken en/of aangeboren afwijkingen moet een syndromale oorzaak van kleine lengte worden overwogen, terwijl bij een laag gewicht of kleine lengte bij de geboorte, zonder inhaalgroei, aandacht moet worden besteed aan IGF-I en de IGF-I-receptor. Vanwege het belang van een diagnose voor prognose en mogelijke therapie kan bij blijvende onduidelijkheid over de oorzaak van de kleine lengte de expertise gevraagd worden van een speciale polikliniek of (internationale) werkgroepen. Als ook dan de diagnose niet kan worden gesteld, is het zinvol het kind na een aantal jaren terug te zien en de groei opnieuw te analyseren, omdat er nieuwe syndromen dan wel nieuwe inzichten in bestaande aandoeningen kunnen zijn beschreven, maar ook vanwege de voortschrijdende vernieuwing van onderzoekstechnieken.

Summary

Most of the variation in adult height is genetically controlled. The vast majority of the genetic factors that influence stature have a small effect. In the diagnostic workup for short stature it is only possible to analyze the genes that have a large effect on growth. However, before considering genetic analysis, it is crucial to characterize the growth retardation carefully by taking the patient history and the family history, a physical examination and sometimes radiological imaging. In this process it is important to pay attention to body proportions, dysmorphic features and/or congenital anomalies, and whether the growth retardation was already present at birth. In the case of disproportion (mostly short arms and legs compared to the trunk) a skeletal dysplasia is suspected, while in the coexistence of dysmorphic features and/or congenital anomalies (next to short stature) a syndromic form of growth retardation is more likely. When the patient is small for gestational age without catch-up growth, one has to consider anomalies of IGF-I or the IGF-I receptor. Reaching a diagnosis is important for prognosis and possible therapy.When no diagnosis can be made, it is recommended to consult experts from specialized outpatient clinics or (international) working groups. If still no diagnosis can be reached the advice is to see the child again in 2-3 years’ time and analyze the growth retardation once more, because new syndromes or additional insights in known disorders can be described by then, but also because of the ongoing development of molecular techniques.

Literatuur

  1. 1.
    Wit JM, Ranke MB, Kelnar CJH. ESPE classification ofpaediatric endocrine diagnosis. Horm Res. 2007;68(S2 07):1-128.Google Scholar
  2. 2.
    Lettre G. Genetic regulation of adult stature. Curr Opin Pediatr. 2009;21:515-22.PubMedCrossRefGoogle Scholar
  3. 3.
    Lettre G. Using height association studies to gain insights into human idiopathic short and syndromic stature phenotypes. Pediatr Nephrol. 2013; 28:557-62.PubMedCrossRefGoogle Scholar
  4. 4.
    Kant SG, Wit JM, Breuning MH. Genetic analysis of short stature. Horm Res. 2003;60:157-65.PubMedCrossRefGoogle Scholar
  5. 5.
    Seaver LH, Irons M; American College ofMedical Genetics (ACMG) Professional Practice and Guidelines Committee. ACMG practice guideline: genetic evaluation of short stature. Genet Med. 2009;11:465-70.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Wit JM, Kiess W, Mullis P. Genetic evaluation of short stature. Best Pract Res Clin Endocrinol Metab. 2011;25:1-17.PubMedCrossRefGoogle Scholar
  7. 7.
    Klammt J, Kiess W, Mullis P. IGF1R mutations as cause of SGA. Best Pract Res Clin Endocrinol Metab. 2011;25:191-206.PubMedCrossRefGoogle Scholar
  8. 8.
    Netchine I, Azzi S, Le Bouc Y, Savage MO. IGF1 molecular anomalies demonstrate its critical role in fetal, postnatal growth and brain development. Best Pract Res Clin Endocrinol Metab. 2011;25: 181-90.PubMedCrossRefGoogle Scholar
  9. 9.
    Walenkamp MJE, Losekoot M, Wit JM. Molecular IGF-1 and IGF-1 receptor defects: from genetics to clinical management. Endocr Dev. 2013;24:128-37.Google Scholar
  10. 10.
    Savarirayan R, Rimoin DL. The skeletal dysplasias. Best Pract Res Clin Endocrinol Metab. 2002;16:547-60.PubMedCrossRefGoogle Scholar
  11. 11.
    Richmond EJ, Rogol AD. Growth hormone deficiency in children. Pituitary. 2008;11:115-20.PubMedCrossRefGoogle Scholar
  12. 12.
    Bober MB, Bellus GA, Nikkel SM, Tiller GE. Hypochondroplasia. In: Pagon RA, Adam MP, Bird TD, et al., eds. GeneReviews. Seattle: University of Washington, 1993-2013. 1999 Jul 15 [updated 2013 Sep 26].Google Scholar
  13. 13.
    Alanay Y, Lachman RS. A review of the principles of radiological assessment of skeletal dysplasias. J Clin Res Pediatr Endocrinol. 2011;3:163-78.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Oostdijk W, Grote FK, Muinck Keizer-Schrama SMPF de, Wit JM. NVK-richtlijn Kleine lengte, een evidence-based richtlijn. Utrecht: NVK, 2008.Google Scholar
  15. 15.
    Oostdijk W, Grote FK, Muinck Keizer-Schrama SMPF de, Wit JM. Diagnostic approach in children with short stature. Horm Res. 2009;72:206-17.PubMedCrossRefGoogle Scholar
  16. 16.
    Orioli IM, Castilla EE, Barbosa-Neto JG. The birth prevalence rates for the skeletal dysplasias. J Med Genet. 1986;23:328-32.PubMedCrossRefGoogle Scholar
  17. 17.
    Warman ML, Cormier-Daire V, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A. 2011;155:943-68.PubMedCentralCrossRefGoogle Scholar
  18. 18.
    Fredriks AM, Buuren S van, Heel WJM van, et al. Nationwide age references for sitting height, leg length, and sitting height/height ratio, and their diagnostic value for disproportionate growth disorders. Arch Dis Child. 2005;90:807-12.PubMedCrossRefGoogle Scholar
  19. 19.
    Gerver WJM, Bruin R de. Paediatric morphometrics: a reference manual. Utrecht: Bunge, 1996.Google Scholar
  20. 20.
    Pauli RM. Achondroplasia. In: Pagon RA, Adam MP, Bird TD, et al., eds. GeneReviews. Seattle: University of Washington, 1993-2013. 1998 Oct 12 [updated 2012 Feb 16].Google Scholar
  21. 21.
    Binder G, Ranke MB, Martin DD. Auxology is a valuable instrument for the clinical diagnosis of SHOX haploinsufficiency in school-age children with unexplained short stature. J Clin Endocrinol Metab. 2003;88:4891-6.PubMedCrossRefGoogle Scholar
  22. 22.
    Benito-Sanz S, Thomas NS, Huber C, et al. A novel class of pseudoautosomal region 1 deletions downstream of SHOX is associated with Leri-Weill dyschondrosteosis. Am J Hum Genet. 2005;77: 533-44.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Gunther DF, Eugster E, Zagar AJ, et al. Ascertainment bias in Turner syndrome: new insights from girls who were diagnosed incidentally in prenatal life. Pediatrics. 2004;114:640-4.PubMedCrossRefGoogle Scholar
  24. 24.
    Spengler S, Begemann M, Ortiz Brllchle N, et al. Molecular karyotyping as a relevant diagnostic tool in children with growth retardation with Silver-Russell features. J Pediatr. 2012;161:933-42.PubMedCrossRefGoogle Scholar
  25. 25.
    Duyvenvoorde HA van, Lui JC, Kant SG, et al. Copy number variants in patients with short stature. Eur J Hum Genet. 2013 Sep 25 [Epub ahead of print].Google Scholar
  26. 26.
    Gordon LB, Brown WT, Collins FS. HutchinsonGilford Progeria syndrome. In: Pagon RA, Adam MP, Bird TD, et al., eds. GeneReviews. Seattle: University ofWashington, 1993-2013. 2003 Dec 12 [updated 2011 Jan 06].Google Scholar
  27. 27.
    Allanson JE, Roberts AE. Noonan syndrome. In: Pagon RA, Adam MP, Bird TD, et al., eds. GeneReviews. Seattle: University of Washington, 1993-2013. 2001 Nov 15 [updated 2011 Aug 04]Google Scholar
  28. 28.
    Saal HM. Russell-Silver syndrome. In: Pagon RA, Adam MP, Bird TD, et al., eds. GeneReviews. Seattle: University of Washington, 1993-2013. 2002 Nov 02 [updated 2011 Jun 02].Google Scholar
  29. 29.
    Renes JS, Willemsen RH, Wagner A, et al. Bloom syndrome in short children born small for gestational age: a challenging diagnosis. J Clin Endocrinol Metab. 2013;98:3932-8.PubMedCrossRefGoogle Scholar
  30. 30.
    Walenkamp MJE, Karperien M, Pereira AM, et al. Homozygous and heterozygous expression of a novel insulin-like growth factor-I mutation. J Clin Endocrinol Metab. 2005;90:2855-64.PubMedCrossRefGoogle Scholar
  31. 31.
    Netchine I, Azzi S, Houang M, et al. Partial primary deficiency of insulin-like growth factor (IGF)-I activity associated with IGF1 mutation demonstrates its critical role in growth and brain development. J Clin Endocrinol Metab. 2009;94:3913-21.PubMedCrossRefGoogle Scholar
  32. 32.
    Woods KA, Camacho-Huïbner C, Savage MO, Clark AJ. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulinlike growth factor I gene. N Engl J Med. 1996;335:1363-7.PubMedCrossRefGoogle Scholar
  33. 33.
    Gannagé-Yared MH, Klammt J, Chouery E, et al. Homozygous mutation of the IGF1 receptor gene in a patient with severe preand postnatal growth failure and congenital malformations. Eur J Endocrinol. 2013;168:K1-7.Google Scholar
  34. 34.
    Duyvenvoorde HA van, Setten PA van, Walenkamp MJE, et al. Short stature associated with a novel heterozygous mutation in the insulin-like growth factor 1 gene. J Clin Endocrinol Metab. 2010;95: E363-7.Google Scholar
  35. 35.
    Fuqua JS, Derr M, Rosenfeld RG, Hwa V. Identification of a novel heterozygous IGF1 splicing mutation in a large kindred with familial short stature. Horm Res Paediatr. 2012;78:59-66.PubMedCrossRefGoogle Scholar
  36. 36.
    Abuzzahab MJ, Schneider A, Goddard A, et al. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med. 2003;349:2211-22.PubMedCrossRefGoogle Scholar
  37. 37.
    Fang P, Hi Cho Y, Derr MA, et al. Severe short stature caused by novel compound heterozygous mutations of the insulin-like growth factor 1 receptor (IGF1R). J Clin Endocrinol Metab. 2012;97:E243-7.Google Scholar
  38. 38.
    Hwa V, Nadeau K, Wit JM, Rosenfeld RG. STAT5b deficiency: lessons from STAT5b gene mutations. Best Pract Res Clin Endocrinol Metab. 2011;25:61-75.PubMedCrossRefGoogle Scholar
  39. 39.
    Peippo MM, Simola KOJ, Valanne LK, et al. PittHopkins syndrome in two patients and further definition of the phenotype. Clin Dysmorphol. 2006;15:47-54.PubMedCrossRefGoogle Scholar
  40. 40.
    Huisman SA, Redeker EJW, Maas SM, et al. High rate of mosaicism in individuals with Cornelia de Lange syndrome. J Med Genet. 2013;50:339-44.PubMedCrossRefGoogle Scholar

Copyright information

© Bohn, Stafleu van Loghum 2014

Authors and Affiliations

  1. 1.afdeling Klinische GeneticaLUMCLeidenThe Netherlands
  2. 2.afdeling Kindergeneeskunde,VUmcAmsterdamThe Netherlands

Personalised recommendations