Advertisement

Computed Tomography in Heart Failure

  • Joshua G Kovoor
  • Aravinda Thiagalingam
  • Clara K ChowEmail author
Cardiac Computed Tomography (B Chow and G Small, Section Editors)
  • 24 Downloads
Part of the following topical collections:
  1. Topical Collection on Cardiac Computed Tomography

Abstract

Purpose of Review

The purpose of this paper was to review the role of cardiac computed tomography (CCT) in both the diagnostic and management pathways of heart failure.

Recent Findings

CT has an essential role in non-invasively excluding coronary artery disease but also can provide additional information that can aid the investigation of the patient presenting with heart failure. CT images provide high-quality information about cardiac structure and pericardium. Cardiac anatomical information, such as the location and size of coronary sinuses, can assist in lead placement in cardiac resynchronisation therapy. Cardiac CT with fractional flow reserve calculation can also provide functional information on the severity of coronary stenosis. Cardiac CT with delayed contrast enhancement also has an emerging role in myocardial tissue characterisation which can contribute to risk stratification in cardiomyopathy patients. CT also may fit better into pathways of screening and monitoring of potential adverse cardiac events in the short-term and long-term assessment of cancer patients who may already be getting a CT for other reasons.

Summary

CT has an evolving role in both the diagnosis and management of heart failure and future research could examine the potential risks, benefits, efficiency and costs of clinical pathways where cardiac CT is more central to the diagnosis and management of patients with heart failure and possible cardiomyopathy.

Keywords

Computed tomography Heart failure Delayed enhancement Coronary artery disease Coronary artery calcium score Ventricular systolic dysfunction Ventricular diastolic dysfunction Cardiomyopathy 

Notes

Compliance with Ethical Standards

Conflict of Interest

All authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev. 2017;3(1):7–11.  https://doi.org/10.15420/cfr.2016:25:2.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ponikowski P, Anker SD, AlHabib KF, Cowie MR, Force TL, Hu S, et al. Heart failure: preventing disease and death worldwide. ESC Heart Fail. 2014;1(1):4–25.  https://doi.org/10.1002/ehf2.12005.CrossRefPubMedGoogle Scholar
  3. 3.
    Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606–19.  https://doi.org/10.1161/HHF.0b013e318291329a.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Guha K, McDonagh T. Heart failure epidemiology: European perspective. Curr Cardiol Rev. 2013;9(2):123–7.CrossRefGoogle Scholar
  5. 5.
    Sakata Y, Shimokawa H. Epidemiology of heart failure in Asia. Circ J. 2013;77(9):2209–17.CrossRefGoogle Scholar
  6. 6.
    Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O’Gara P et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Cardiovasc Comput Tomogr. 2010;4(6):407 e1–33. doi: https://doi.org/10.1016/j.jcct.2010.11.001.Google Scholar
  7. 7.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200.  https://doi.org/10.1093/eurheartj/ehw128.CrossRefPubMedGoogle Scholar
  8. 8.
    Ramos V, Bettencourt N, Silva J, Ferreira N, Chiribiri A, Schuster A, et al. Noninvasive anatomical and functional assessment of coronary artery disease. Rev Port Cardiol. 2015;34(4):223–32.  https://doi.org/10.1016/j.repc.2014.10.008.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang LJ, Wang Y, Schoepf UJ, Meinel FG, Bayer RR 2nd, Qi L, et al. Image quality, radiation dose, and diagnostic accuracy of prospectively ECG-triggered high-pitch coronary CT angiography at 70 kVp in a clinical setting: comparison with invasive coronary angiography. Eur Radiol. 2016;26(3):797–806.  https://doi.org/10.1007/s00330-015-3868-z.CrossRefPubMedGoogle Scholar
  10. 10.
    Stehli J, Fuchs TA, Bull S, Clerc OF, Possner M, Buechel RR, et al. Accuracy of coronary CT angiography using a submillisievert fraction of radiation exposure: comparison with invasive coronary angiography. J Am Coll Cardiol. 2014;64(8):772–80.  https://doi.org/10.1016/j.jacc.2014.04.079.CrossRefPubMedGoogle Scholar
  11. 11.
    Uehara M, Takaoka H, Kobayashi Y, Funabashi N. Diagnostic accuracy of 320-slice computed-tomography for detection of significant coronary artery stenosis in patients with various heart rates and heart rhythms compared with conventional coronary-angiography. Int J Cardiol. 2013;167(3):809–15.  https://doi.org/10.1016/j.ijcard.2012.02.017.CrossRefPubMedGoogle Scholar
  12. 12.
    Petcherski O, Gaspar T, Halon DA, Peled N, Jaffe R, Molnar R, et al. Diagnostic accuracy of 256-row computed tomographic angiography for detection of obstructive coronary artery disease using invasive quantitative coronary angiography as reference standard. Am J Cardiol. 2013;111(4):510–5.  https://doi.org/10.1016/j.amjcard.2012.10.036.CrossRefPubMedGoogle Scholar
  13. 13.
    Madhok R, Aggarwal A. Comparison of 128-slice dual source CT coronary angiography with invasive coronary angiography. J Clin Diagn Res. 2014;8(6):RC08–11.  https://doi.org/10.7860/JCDR/2014/9568.4514.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sajjadieh A, Hekmatnia A, Keivani M, Asoodeh A, Pourmoghaddas M, Sanei H. Diagnostic performance of 64-row coronary CT angiography in detecting significant stenosis as compared with conventional invasive coronary angiography. ARYA Atheroscler. 2013;9(2):157–63.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hamilton-Craig C, Strugnell WE, Raffel OC, Porto I, Walters DL, Slaughter RE. CT angiography with cardiac MRI: non-invasive functional and anatomical assessment for the etiology in newly diagnosed heart failure. Int J Card Imaging. 2012;28(5):1111–22.  https://doi.org/10.1007/s10554-011-9926-y.CrossRefGoogle Scholar
  16. 16.
    Groothuis JG, Beek AM, Brinckman SL, Meijerink MR, van den Oever ML, Hofman MB, et al. Combined non-invasive functional and anatomical diagnostic work-up in clinical practice: the magnetic resonance and computed tomography in suspected coronary artery disease (MARCC) study. Eur Heart J. 2013;34(26):1990–8.  https://doi.org/10.1093/eurheartj/eht077.CrossRefPubMedGoogle Scholar
  17. 17.
    Li S, Tang X, Peng L, Luo Y, Dong R, Liu J. The diagnostic performance of CT-derived fractional flow reserve for evaluation of myocardial ischaemia confirmed by invasive fractional flow reserve: a meta-analysis. Clin Radiol. 2015;70(5):476–86.  https://doi.org/10.1016/j.crad.2014.12.013.CrossRefPubMedGoogle Scholar
  18. 18.
    Kim KP, Einstein AJ, Berrington de Gonzalez A. Coronary artery calcification screening: estimated radiation dose and cancer risk. Arch Intern Med. 2009;169(13):1188–94.  https://doi.org/10.1001/archinternmed.2009.162.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Alluri K, Joshi PH, Henry TS, Blumenthal RS, Nasir K, Blaha MJ. Scoring of coronary artery calcium scans: history, assumptions, current limitations, and future directions. Atherosclerosis. 2015;239(1):109–17.  https://doi.org/10.1016/j.atherosclerosis.2014.12.040.CrossRefPubMedGoogle Scholar
  20. 20.
    Bakhshi H, Ambale-Venkatesh B, Yang X, Ostovaneh MR, Wu CO, Budoff M, et al. Progression of coronary artery calcium and incident heart failure: the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2017;6(4).  https://doi.org/10.1161/JAHA.116.005253.
  21. 21.
    Ito T, Suzuki Y, Ehara M, Matsuo H, Teramoto T, Terashima M, et al. Impact of epicardial fat volume on coronary artery disease in symptomatic patients with a zero calcium score. Int J Cardiol. 2013;167(6):2852–8.  https://doi.org/10.1016/j.ijcard.2012.07.026.CrossRefPubMedGoogle Scholar
  22. 22.
    Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.  https://doi.org/10.1056/NEJMoa072100.CrossRefPubMedGoogle Scholar
  23. 23.
    Sarwar A, Shaw LJ, Shapiro MD, Blankstein R, Hoffmann U, Cury RC, et al. Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc Imaging. 2009;2(6):675–88.  https://doi.org/10.1016/j.jcmg.2008.12.031.CrossRefPubMedGoogle Scholar
  24. 24.
    Nasir K, Clouse M. Role of nonenhanced multidetector CT coronary artery calcium testing in asymptomatic and symptomatic individuals. Radiology. 2012;264(3):637–49.  https://doi.org/10.1148/radiol.12110810.CrossRefPubMedGoogle Scholar
  25. 25.
    ten Kate GJ, Caliskan K, Dedic A, Meijboom WB, Neefjes LA, Manintveld OC, et al. Computed tomography coronary imaging as a gatekeeper for invasive coronary angiography in patients with newly diagnosed heart failure of unknown aetiology. Eur J Heart Fail. 2013;15(9):1028–34.  https://doi.org/10.1093/eurjhf/hft090.CrossRefPubMedGoogle Scholar
  26. 26.
    Mylonas I, Alam M, Amily N, Small G, Chen L, Yam Y, et al. Quantifying coronary artery calcification from a contrast-enhanced cardiac computed tomography angiography study. Eur Heart J Cardiovasc Imaging. 2014;15(2):210–5.  https://doi.org/10.1093/ehjci/jet144.CrossRefPubMedGoogle Scholar
  27. 27.
    Whitlock MC, Yeboah J, Burke GL, Chen H, Klepin HD, Hundley WG. Cancer and its association with the development of coronary artery calcification: an assessment from the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2015;4(11).  https://doi.org/10.1161/JAHA.115.002533.
  28. 28.
    Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375(15):1457–67.  https://doi.org/10.1056/NEJMra1100265.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000;22(4):263–302.  https://doi.org/10.2165/00002018-200022040-00002.CrossRefPubMedGoogle Scholar
  30. 30.
    Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–7.CrossRefGoogle Scholar
  31. 31.
    Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–79.  https://doi.org/10.1002/cncr.11407.CrossRefPubMedGoogle Scholar
  32. 32.
    Gottdiener JS, Appelbaum FR, Ferrans VJ, Deisseroth A, Ziegler J. Cardiotoxicity associated with high-dose cyclophosphamide therapy. Arch Intern Med. 1981;141(6):758–63.CrossRefGoogle Scholar
  33. 33.
    Martin M, Pienkowski T, Mackey J, Pawlicki M, Guastalla JP, Weaver C, et al. Adjuvant docetaxel for node-positive breast cancer. N Engl J Med. 2005;352(22):2302–13.  https://doi.org/10.1056/NEJMoa043681.CrossRefPubMedGoogle Scholar
  34. 34.
    Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231–47.  https://doi.org/10.1016/j.jacc.2009.02.050.CrossRefPubMedGoogle Scholar
  35. 35.
    Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352(24):2487–98.  https://doi.org/10.1056/NEJMoa043445.CrossRefPubMedGoogle Scholar
  36. 36.
    Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370(9604):2011–9.  https://doi.org/10.1016/S0140-6736(07)61865-0.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20(5):1215–21.  https://doi.org/10.1200/JCO.2002.20.5.1215.CrossRefPubMedGoogle Scholar
  38. 38.
    Perez EA, Koehler M, Byrne J, Preston AJ, Rappold E, Ewer MS. Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc. 2008;83(6):679–86.  https://doi.org/10.4065/83.6.679.CrossRefPubMedGoogle Scholar
  39. 39.
    Khakoo AY, Kassiotis CM, Tannir N, Plana JC, Halushka M, Bickford C, et al. Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer. 2008;112(11):2500–8.  https://doi.org/10.1002/cncr.23460.CrossRefPubMedGoogle Scholar
  40. 40.
    Bair SM, Choueiri TK, Moslehi J. Cardiovascular complications associated with novel angiogenesis inhibitors: emerging evidence and evolving perspectives. Trends Cardiovasc Med. 2013;23(4):104–13.  https://doi.org/10.1016/j.tcm.2012.09.008.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20.  https://doi.org/10.1016/j.jacc.2009.03.095.CrossRefPubMedGoogle Scholar
  42. 42.
    Arsanjani R, Berman DS, Gransar H, Cheng VY, Dunning A, Lin FY, et al. Left ventricular function and volume with coronary CT angiography improves risk stratification and identification of patients at risk for incident mortality: results from 7758 patients in the prospective multinational CONFIRM observational cohort study. Radiology. 2014;273(1):70–7.  https://doi.org/10.1148/radiol.14122816.CrossRefPubMedGoogle Scholar
  43. 43.
    Rigolli M, Anandabaskaran S, Christiansen JP, Whalley GA. Bias associated with left ventricular quantification by multimodality imaging: a systematic review and meta-analysis. Open Heart. 2016;3(1):e000388.  https://doi.org/10.1136/openhrt-2015-000388.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Schlosser T, Mohrs OK, Magedanz A, Voigtlander T, Schmermund A, Barkhausen J. Assessment of left ventricular function and mass in patients undergoing computed tomography (CT) coronary angiography using 64-detector-row CT: comparison to magnetic resonance imaging. Acta Radiol. 2007;48(1):30–5.  https://doi.org/10.1080/02841850601067611.CrossRefPubMedGoogle Scholar
  45. 45.
    Nasir K, Katz R, Mao S, Takasu J, Bomma C, Lima JA, et al. Comparison of left ventricular size by computed tomography with magnetic resonance imaging measures of left ventricle mass and volumes: the multi-ethnic study of atherosclerosis. J Cardiovasc Comput Tomogr. 2008;2(3):141–8.  https://doi.org/10.1016/j.jcct.2008.01.003.CrossRefPubMedGoogle Scholar
  46. 46.
    Boogers MJ, van Werkhoven JM, Schuijf JD, Delgado V, El-Naggar HM, Boersma E, et al. Feasibility of diastolic function assessment with cardiac CT: feasibility study in comparison with tissue Doppler imaging. JACC Cardiovasc Imaging. 2011;4(3):246–56.  https://doi.org/10.1016/j.jcmg.2010.11.017.CrossRefPubMedGoogle Scholar
  47. 47.
    Flachskampf FA, Biering-Sorensen T, Solomon SD, Duvernoy O, Bjerner T, Smiseth OA. Cardiac imaging to evaluate left ventricular diastolic function. JACC Cardiovasc Imaging. 2015;8(9):1071–93.  https://doi.org/10.1016/j.jcmg.2015.07.004.CrossRefPubMedGoogle Scholar
  48. 48.
    Shen Z, Lee O, Taguchi K. Beam hardening and motion artifacts in cardiac CT: evaluation and iterative correction method. SPIE Medical Imaging SPIE. 2016.Google Scholar
  49. 49.
    Rodriguez-Granillo GA. Delayed enhancement cardiac computed tomography for the assessment of myocardial infarction: from bench to bedside. Cardiovasc Diagn Ther. 2017;7(2):159–70.  https://doi.org/10.21037/cdt.2017.03.16.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Weng Z, Yao J, Chan RH, He J, Yang X, Zhou Y, et al. Prognostic value of LGE-CMR in HCM: a meta-analysis. JACC Cardiovasc Imaging. 2016;9(12):1392–402.  https://doi.org/10.1016/j.jcmg.2016.02.031.CrossRefPubMedGoogle Scholar
  51. 51.
    Ganesan AN, Gunton J, Nucifora G, McGavigan AD, Selvanayagam JB. Impact of late gadolinium enhancement on mortality, sudden death and major adverse cardiovascular events in ischemic and nonischemic cardiomyopathy: a systematic review and meta-analysis. Int J Cardiol. 2018;254:230–7.  https://doi.org/10.1016/j.ijcard.2017.10.094.CrossRefPubMedGoogle Scholar
  52. 52.
    Zaman S, Goldberger JJ, Kovoor P. Sudden death risk-stratification in 2018-2019: the old and the new. Heart Lung Circ. 2019;28(1):57–64.  https://doi.org/10.1016/j.hlc.2018.08.027.CrossRefPubMedGoogle Scholar
  53. 53.
    Lardo AC, Cordeiro MA, Silva C, Amado LC, George RT, Saliaris AP, et al. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation. 2006;113(3):394–404.  https://doi.org/10.1161/CIRCULATIONAHA.105.521450.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Schuleri KH, Centola M, George RT, Amado LC, Evers KS, Kitagawa K, et al. Characterization of peri-infarct zone heterogeneity by contrast-enhanced multidetector computed tomography: a comparison with magnetic resonance imaging. J Am Coll Cardiol. 2009;53(18):1699–707.  https://doi.org/10.1016/j.jacc.2009.01.056.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Shiozaki AA, Senra T, Arteaga E, Martinelli Filho M, Pita CG, Avila LF, et al. Myocardial fibrosis detected by cardiac CT predicts ventricular fibrillation/ventricular tachycardia events in patients with hypertrophic cardiomyopathy. J Cardiovasc Comput Tomogr. 2013;7(3):173–81.  https://doi.org/10.1016/j.jcct.2013.04.002.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bogaert J, Francone M. Pericardial disease: value of CT and MR imaging. Radiology. 2013;267(2):340–56.  https://doi.org/10.1148/radiol.13121059.CrossRefPubMedGoogle Scholar
  57. 57.
    Cosyns B, Plein S, Nihoyanopoulos P, Smiseth O, Achenbach S, Andrade MJ, et al. European Association of Cardiovascular Imaging (EACVI) position paper: multimodality imaging in pericardial disease. Eur Heart J Cardiovasc Imaging. 2015;16(1):12–31.  https://doi.org/10.1093/ehjci/jeu128.CrossRefPubMedGoogle Scholar
  58. 58.
    Al-Mallah MH, Almasoudi F, Ebid M, Ahmed AM, Jamiel A. Multimodality imaging of pericardial diseases. Curr Treat Options Cardiovasc Med. 2017;19(12):89.  https://doi.org/10.1007/s11936-017-0590-y.CrossRefPubMedGoogle Scholar
  59. 59.
    Wang ZJ, Reddy GP, Gotway MB, Yeh BM, Hetts SW, Higgins CB. CT and MR imaging of pericardial disease. Radiographics. 2003;23 Spec No::S167–80.  https://doi.org/10.1148/rg.23si035504.CrossRefPubMedGoogle Scholar
  60. 60.
    Adler Y, Charron P, Imazio M, Badano L, Baron-Esquivias G, Bogaert J, et al. 2015 ESC guidelines for the diagnosis and management of pericardial diseases. Rev Esp Cardiol (Engl Ed). 2015;68(12):1126.  https://doi.org/10.1016/j.rec.2015.10.008.CrossRefGoogle Scholar
  61. 61.
    Ardhanari S, Yarlagadda B, Parikh V, Dellsperger KC, Chockalingam A, Balla S, et al. Systematic review of non-invasive cardiovascular imaging in the diagnosis of constrictive pericarditis. Indian Heart J. 2017;69(1):57–67.  https://doi.org/10.1016/j.ihj.2016.06.004.CrossRefPubMedGoogle Scholar
  62. 62.
    Alter P, Figiel JH, Rupp TP, Bachmann GF, Maisch B, Rominger MB. MR, CT, and PET imaging in pericardial disease. Heart Fail Rev. 2013;18(3):289–306.  https://doi.org/10.1007/s10741-012-9309-z.CrossRefPubMedGoogle Scholar
  63. 63.
    Imazio M, Brucato A, Derosa FG, Lestuzzi C, Bombana E, Scipione F, et al. Aetiological diagnosis in acute and recurrent pericarditis: when and how. J Cardiovasc Med (Hagerstown). 2009;10(3):217–30.  https://doi.org/10.2459/JCM.0b013e328322f9b1.CrossRefGoogle Scholar
  64. 64.
    Smolis-Bak E, Dabrowski R, Piotrowicz E, Chwyczko T, Dobraszkiewicz-Wasilewska B, Kowalik I, et al. Hospital-based and telemonitoring guided home-based training programs: effects on exercise tolerance and quality of life in patients with heart failure (NYHA class III) and cardiac resynchronization therapy. A randomized, prospective observation. Int J Cardiol. 2015;199:442–7.  https://doi.org/10.1016/j.ijcard.2015.07.041.CrossRefPubMedGoogle Scholar
  65. 65.
    Kyriacou A, Pabari PA, Mayet J, Peters NS, Davies DW, Lim PB, et al. Cardiac resynchronization therapy and AV optimization increase myocardial oxygen consumption, but increase cardiac function more than proportionally. Int J Cardiol. 2014;171(2):144–52.  https://doi.org/10.1016/j.ijcard.2013.10.026.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Frigerio M, Lunati M, Pasqualucci D, Vargiu S, Foti G, Pedretti S, et al. Left ventricular ejection fraction overcrossing 35% after one year of cardiac resynchronization therapy predicts long term survival and freedom from sudden cardiac death: single center observational experience. Int J Cardiol. 2014;172(1):64–71.  https://doi.org/10.1016/j.ijcard.2013.12.005.CrossRefPubMedGoogle Scholar
  67. 67.
    Abraham WT, Hayes DL. Cardiac resynchronization therapy for heart failure. Circulation. 2003;108(21):2596–603.  https://doi.org/10.1161/01.CIR.0000096580.26969.9A.CrossRefPubMedGoogle Scholar
  68. 68.
    Puglisi A, Lunati M, Marullo AG, Bianchi S, Feccia M, Sgreccia F, et al. Limited thoracotomy as a second choice alternative to transvenous implant for cardiac resynchronisation therapy delivery. Eur Heart J. 2004;25(12):1063–9.  https://doi.org/10.1016/j.ehj.2004.04.016.CrossRefPubMedGoogle Scholar
  69. 69.
    Ma H, Wang X, Xie H, Sun C, Wen Z, Liu Y, et al. Characterization of the cardiac venous system in heart failure patients using 256-slice CT. Int J Cardiol. 2016;203:447–8.  https://doi.org/10.1016/j.ijcard.2015.10.135.CrossRefPubMedGoogle Scholar
  70. 70.
    Sommer A, Kronborg MB, Norgaard BL, Poulsen SH, Bouchelouche K, Bottcher M, et al. Multimodality imaging-guided left ventricular lead placement in cardiac resynchronization therapy: a randomized controlled trial. Eur J Heart Fail. 2016;18(11):1365–74.  https://doi.org/10.1002/ejhf.530.CrossRefPubMedGoogle Scholar
  71. 71.
    Alhailiy AB, Ekpo EU, Kench PL, Ryan EA, Brennan PC, McEntee M. The associated factors for radiation dose variation in cardiac CT angiography. Br J Radiol. 2019;92(1096):20180793.  https://doi.org/10.1259/bjr.20180793.CrossRefPubMedGoogle Scholar
  72. 72.
    Blomster JI, O'Rourke J, Choudhary P, Thiagalingam A, Kovoor P, Adler J, et al. Patient selection essential for computed tomography coronary angiography. Scand Cardiovasc J. 2016;50(4):206–12.  https://doi.org/10.1080/14017431.2016.1177659.CrossRefPubMedGoogle Scholar
  73. 73.
    Vorre MM, Abdulla J. Diagnostic accuracy and radiation dose of CT coronary angiography in atrial fibrillation: systematic review and meta-analysis. Radiology. 2013;267(2):376–86.  https://doi.org/10.1148/radiol.13121224.CrossRefPubMedGoogle Scholar
  74. 74.
    Kosmala A, Petritsch B, Weng AM, Bley TA, Gassenmaier T. Radiation dose of coronary CT angiography with a third-generation dual-source CT in a “real-world” patient population. Eur Radiol. 2018;29:4341–8.  https://doi.org/10.1007/s00330-018-5856-6.CrossRefPubMedGoogle Scholar
  75. 75.
    Stocker TJ, Deseive S, Leipsic J, Hadamitzky M, Chen MY, Rubinshtein R, et al. Reduction in radiation exposure in cardiovascular computed tomography imaging: results from the PROspective multicenter registry on radiaTion dose Estimates of cardiac CT angIOgraphy iN daily practice in 2017 (PROTECTION VI). Eur Heart J. 2018;39(41):3715–23.  https://doi.org/10.1093/eurheartj/ehy546.CrossRefPubMedGoogle Scholar
  76. 76.
    Menke J, Unterberg-Buchwald C, Staab W, Sohns JM, Seif Amir Hosseini A, Schwarz A. Head-to-head comparison of prospectively triggered vs retrospectively gated coronary computed tomography angiography: meta-analysis of diagnostic accuracy, image quality, and radiation dose. Am Heart J. 2013;165(2):154–63 e3.  https://doi.org/10.1016/j.ahj.2012.10.026.CrossRefPubMedGoogle Scholar
  77. 77.
    Davenport MS, Khalatbari S, Cohan RH, Dillman JR, Myles JD, Ellis JH. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate. Radiology. 2013;268(3):719–28.  https://doi.org/10.1148/radiol.13122276.CrossRefPubMedGoogle Scholar
  78. 78.
    Lee J, Cho JY, Lee HJ, Jeong YY, Kim CK, Park BK, et al. Contrast-induced nephropathy in patients undergoing intravenous contrast-enhanced computed tomography in Korea: a multi-institutional study in 101487 patients. Korean J Radiol. 2014;15(4):456–63.  https://doi.org/10.3348/kjr.2014.15.4.456.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Jung JW, Choi YH, Park CM, Park HW, Cho SH, Kang HR. Outcomes of corticosteroid prophylaxis for hypersensitivity reactions to low osmolar contrast media in high-risk patients. Ann Allergy Asthma Immunol. 2016;117(3):304–9 e1.  https://doi.org/10.1016/j.anai.2016.07.010.CrossRefPubMedGoogle Scholar
  80. 80.
    Darlington M, Gueret P, Laissy JP, Pierucci AF, Maoulida H, Quelen C, et al. Cost-effectiveness of computed tomography coronary angiography versus conventional invasive coronary angiography. Eur J Health Econ. 2015;16(6):647–55.  https://doi.org/10.1007/s10198-014-0616-2.CrossRefPubMedGoogle Scholar
  81. 81.
    Igarashi A, Fujito K, Hirano M, Fukuda T. Cost minimization analysis of beta-blocker at the time of CT imaging for suspected of coronary heart disease in Japan. J Med Econ. 2014;17(2):142–7.  https://doi.org/10.3111/13696998.2013.877021.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Joshua G Kovoor
    • 1
  • Aravinda Thiagalingam
    • 2
    • 3
  • Clara K Chow
    • 2
    • 3
    Email author
  1. 1.Adelaide Medical School, Faculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
  2. 2.Department of Cardiology, Westmead HospitalWestmeadAustralia
  3. 3.Westmead Applied Research Centre, Faculty of Medicine and HealthUniversity of SydneyWestmeadAustralia

Personalised recommendations