Advertisement

Coronary Vessel Wall Imaging: State of the Art and Future Directions

  • Thomas WursterEmail author
  • Ulf Landmesser
  • Leif-Christopher Engel
  • Boris Bigalke
  • Marcus Makowski
Cardiac Magnetic Resonance (V Püntmann and E Nagel, Section Editors)
  • 38 Downloads
Part of the following topical collections:
  1. Topical Collection on Cardiac Magnetic Resonance

Abstract

Purpose of Review

The purpose of this paper is to review the latest advancements and developments in non-invasive coronary magnetic resonance (MR) and hybrid positron emission tomography (PET)/MR imaging.

Recent Findings

Coronary MRI has advanced in recent years in different aspects, especially regarding technical developments, scan protocols, and molecular probes. Recently introduced hybrid PET/MR scanners have already demonstrated great potential in improving cardiovascular imaging.

Summary

Coronary atherosclerosis and acute myocardial infarction remain major threats to physical health worldwide. Several techniques, from invasive intravascular imaging to non-invasive imaging methods, are studied extensively to identify patients with vulnerable plaques at risk for adverse coronary events. While imaging of vulnerable plaques is getting more and more sophisticated, the clinical impact of molecular plaque imaging on prognosis and disease management still has to be fully defined.

Keywords

Coronary magnetic resonance imaging Hybrid positron emission tomography/magnetic resonance imaging (PET/MR) Atherosclerosis Vulnerable plaque Non-invasive plaque imaging 

Notes

Compliance with Ethical Standards

Conflict of Interest

Thomas Heinrich Wurster is a participant in the Berlin Institute of Health Charité Clinician Scientist Program funded by Charité-Universitätsmedizin Berlin and Berlin Institute of Health.

Ulf Landmesser has nothing to disclose.

Leif-Christopher Engel has nothing to disclose.

Marcus Makowski has nothing to disclose.

Boris Bigalke is employed by Charité Universitätsmedizin Berlin.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.  https://doi.org/10.1038/nature10146.CrossRefPubMedGoogle Scholar
  2. 2.
    Tesauro M, Mauriello A, Rovella V, Annicchiarico-Petruzzelli M, Cardillo C, Melino G, et al. Arterial ageing: from endothelial dysfunction to vascular calcification. J Intern Med. 2017;281(5):471–82.  https://doi.org/10.1111/joim.12605.CrossRefPubMedGoogle Scholar
  3. 3.
    Schunkert H. Genetics of CVD in 2017: expanding the spectrum of CVD genetics. Nat Rev Cardiol. 2018;15(2):77–8.  https://doi.org/10.1038/nrcardio.2017.209.CrossRefPubMedGoogle Scholar
  4. 4.
    Verweij N, Eppinga RN, Hagemeijer Y, van der Harst P. Identification of 15 novel risk loci for coronary artery disease and genetic risk of recurrent events, atrial fibrillation and heart failure. Sci Rep. 2017;7(1):2761.  https://doi.org/10.1038/s41598-017-03062-8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European atherosclerosis society consensus panel. Eur Heart J. 2017;38(32):2459–72.  https://doi.org/10.1093/eurheartj/ehx144.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ference BA, Graham I, Tokgozoglu L, Catapano AL. Impact of lipids on cardiovascular health: JACC health promotion series. J Am Coll Cardiol. 2018;72(10):1141–56.  https://doi.org/10.1016/j.jacc.2018.06.046.CrossRefPubMedGoogle Scholar
  7. 7.
    Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957–67.  https://doi.org/10.1016/S0140-6736(15)01225-8.CrossRefPubMedGoogle Scholar
  8. 8.
    Libby P, Ridker PM, Hansson GK. Leducq transatlantic network on a. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009;54(23):2129–38.  https://doi.org/10.1016/j.jacc.2009.09.009.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Libby P. Interleukin-1 Beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. J Am Coll Cardiol. 2017;70(18):2278–89.  https://doi.org/10.1016/j.jacc.2017.09.028.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66.  https://doi.org/10.1161/CIRCRESAHA.114.302721.CrossRefPubMedGoogle Scholar
  11. 11.
    Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and National Burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25.  https://doi.org/10.1016/j.jacc.2017.04.052.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Thiele H, Akin I, Sandri M, Fuernau G, de Waha S, Meyer-Saraei R, et al. PCI strategies in patients with acute myocardial infarction and cardiogenic shock. N Engl J Med. 2017;377(25):2419–32.  https://doi.org/10.1056/NEJMoa1710261.CrossRefPubMedGoogle Scholar
  13. 13.
    Goldstein JA, Demetriou D, Grines CL, Pica M, Shoukfeh M, O'Neill WW. Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med. 2000;343(13):915–22.  https://doi.org/10.1056/NEJM200009283431303.CrossRefPubMedGoogle Scholar
  14. 14.
    Sugiyama T, Yamamoto E, Bryniarski K, Xing L, Lee H, Isobe M, et al. Nonculprit plaque characteristics in patients with acute coronary syndrome caused by plaque Erosion vs plaque rupture: a 3-vessel optical coherence tomography study. JAMA Cardiol. 2018;3(3):207–14.  https://doi.org/10.1001/jamacardio.2017.5234.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tuzcu EM, Kapadia SR, Tutar E, Ziada KM, Hobbs RE, McCarthy PM, et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation. 2001;103(22):2705–10.CrossRefPubMedGoogle Scholar
  16. 16.
    Andrews JPM, Fayad ZA, Dweck MR. New methods to image unstable atherosclerotic plaques. Atherosclerosis. 2018;272:118–28.  https://doi.org/10.1016/j.atherosclerosis.2018.03.021.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Burke AP, Kolodgie FD, Farb A, Weber DK, Malcom GT, Smialek J, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103(7):934–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart. 1999;82(3):265–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sato Y, Hatakeyama K, Marutsuka K, Asada Y. Incidence of asymptomatic coronary thrombosis and plaque disruption: comparison of non-cardiac and cardiac deaths among autopsy cases. Thromb Res. 2009;124(1):19–23.  https://doi.org/10.1016/j.thromres.2008.08.026.CrossRefPubMedGoogle Scholar
  20. 20.
    Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 Suppl):C13–8.  https://doi.org/10.1016/j.jacc.2005.10.065.CrossRefPubMedGoogle Scholar
  21. 21.
    Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362(10):886–95.  https://doi.org/10.1056/NEJMoa0907272.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med. 2013;368(21):2004–13.  https://doi.org/10.1056/NEJMra1216063.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22.  https://doi.org/10.1056/NEJMoa1615664.CrossRefPubMedGoogle Scholar
  24. 24.
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.  https://doi.org/10.1056/NEJMoa1707914.CrossRefPubMedGoogle Scholar
  25. 25.
    Jansen CHP, Perera D, Wiethoff AJ, Phinikaridou A, Razavi RM, Rinaldi A, et al. Contrast-enhanced magnetic resonance imaging for the detection of ruptured coronary plaques in patients with acute myocardial infarction. PLoS One. 2017;12(11):e0188292.  https://doi.org/10.1371/journal.pone.0188292.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59(12):1058–72.  https://doi.org/10.1016/j.jacc.2011.09.079.CrossRefPubMedGoogle Scholar
  27. 27.
    Bourantas CV, Jaffer FA, Gijsen FJ, van Soest G, Madden SP, Courtney BK, et al. Hybrid intravascular imaging: recent advances, technical considerations, and current applications in the study of plaque pathophysiology. Eur Heart J. 2017;38(6):400–12.  https://doi.org/10.1093/eurheartj/ehw097.CrossRefPubMedGoogle Scholar
  28. 28.
    Investigators S-H, Newby DE, Adamson PD, Berry C, Boon NA, Dweck MR, et al. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med. 2018;379(10):924–33.  https://doi.org/10.1056/NEJMoa1805971.CrossRefGoogle Scholar
  29. 29.
    Ferencik M, Mayrhofer T, Bittner DO, Emami H, Puchner SB, Lu MT, et al. Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain: a secondary analysis of the PROMISE randomized clinical trial. JAMA Cardiol. 2018;3(2):144–52.  https://doi.org/10.1001/jamacardio.2017.4973.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Makowski MR, Henningsson M, Spuentrup E, Kim WY, Maintz D, Manning WJ, et al. Characterization of coronary atherosclerosis by magnetic resonance imaging. Circulation. 2013;128(11):1244–55.  https://doi.org/10.1161/CIRCULATIONAHA.113.002681.CrossRefPubMedGoogle Scholar
  31. 31.
    Robson PM, Dey D, Newby DE, Berman D, Li D, Fayad ZA, et al. MR/PET Imaging of the Cardiovascular System. JACC Cardiovasc Imaging. 2017;10(10 Pt A):1165–79.  https://doi.org/10.1016/j.jcmg.2017.07.008.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    •• Robson PM, Dweck MR, Trivieri MG, Abgral R, Karakatsanis NA, Contreras J, et al. Coronary artery PET/MR imaging: feasibility, limitations, and solutions. JACC Cardiovasc Imaging. 2017;10(10 Pt A):1103–12.  https://doi.org/10.1016/j.jcmg.2016.09.029 First successful coronary PET/MR imaging of microcalcification and inflammation. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95.  https://doi.org/10.1056/NEJMra043430.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116(16):1832–44.  https://doi.org/10.1161/CIRCULATIONAHA.106.676890.CrossRefPubMedGoogle Scholar
  35. 35.
    Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72.  https://doi.org/10.1056/NEJMoa054013.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kathiresan S. Myocardial infarction genetics C. A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. N Engl J Med. 2008;358(21):2299–300.  https://doi.org/10.1056/NEJMc0707445.CrossRefPubMedGoogle Scholar
  37. 37.
    Kolodgie FD, Narula J, Yuan C, Burke AP, Finn AV, Virmani R. Elimination of neoangiogenesis for plaque stabilization: is there a role for local drug therapy? J Am Coll Cardiol. 2007;49(21):2093–101.  https://doi.org/10.1016/j.jacc.2006.10.083.CrossRefPubMedGoogle Scholar
  38. 38.
    Nakano D, Hayashi T, Tazawa N, Yamashita C, Inamoto S, Okuda N, et al. Chronic hypoxia accelerates the progression of atherosclerosis in apolipoprotein E-knockout mice. Hypertens Res. 2005;28(10):837–45.  https://doi.org/10.1291/hypres.28.837.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sluimer JC, Kolodgie FD, Bijnens AP, Maxfield K, Pacheco E, Kutys B, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol. 2009;53(17):1517–27.  https://doi.org/10.1016/j.jacc.2008.12.056.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25(10):2054–61.  https://doi.org/10.1161/01.ATV.0000178991.71605.18.CrossRefPubMedGoogle Scholar
  41. 41.
    Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349(24):2316–25.  https://doi.org/10.1056/NEJMoa035655.CrossRefPubMedGoogle Scholar
  42. 42.
    Aikawa E, Nahrendorf M, Figueiredo JL, Swirski FK, Shtatland T, Kohler RH, et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007;116(24):2841–50.  https://doi.org/10.1161/CIRCULATIONAHA.107.732867.CrossRefPubMedGoogle Scholar
  43. 43.
    Joshi NV, Vesey A, Newby DE, Dweck MR. Will 18F-sodium fluoride PET-CT imaging be the magic bullet for identifying vulnerable coronary atherosclerotic plaques? Curr Cardiol Rep. 2014;16(9):521.  https://doi.org/10.1007/s11886-014-0521-4.CrossRefPubMedGoogle Scholar
  44. 44.
    Irkle A, Vesey AT, Lewis DY, Skepper JN, Bird JL, Dweck MR, et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun. 2015;6:7495.  https://doi.org/10.1038/ncomms8495.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22):1371–5.  https://doi.org/10.1056/NEJM198705283162204.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.CrossRefPubMedGoogle Scholar
  47. 47.
    Virmani R, Burke AP, Kolodgie FD, Farb A. Vulnerable plaque: the pathology of unstable coronary lesions. J Interv Cardiol. 2002;15(6):439–46.CrossRefPubMedGoogle Scholar
  48. 48.
    Cheng JM, Garcia-Garcia HM, de Boer SP, Kardys I, Heo JH, Akkerhuis KM, et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur Heart J. 2014;35(10):639–47.  https://doi.org/10.1093/eurheartj/eht484.CrossRefPubMedGoogle Scholar
  49. 49.
    Narula J, Nakano M, Virmani R, Kolodgie FD, Petersen R, Newcomb R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol. 2013;61(10):1041–51.  https://doi.org/10.1016/j.jacc.2012.10.054.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Libby P, Tabas I, Fredman G, Fisher EA. Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res. 2014;114(12):1867–79.  https://doi.org/10.1161/CIRCRESAHA.114.302699.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mittleman MA, Mostofsky E. Physical, psychological and chemical triggers of acute cardiovascular events: preventive strategies. Circulation. 2011;124(3):346–54.  https://doi.org/10.1161/CIRCULATIONAHA.110.968776.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Corrales-Medina VF, Madjid M, Musher DM. Role of acute infection in triggering acute coronary syndromes. Lancet Infect Dis. 2010;10(2):83–92.  https://doi.org/10.1016/S1473-3099(09)70331-7.CrossRefPubMedGoogle Scholar
  53. 53.
    Kwong JC, Schwartz KL, Campitelli MA, Chung H, Crowcroft NS, Karnauchow T, et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med. 2018;378(4):345–53.  https://doi.org/10.1056/NEJMoa1702090.CrossRefPubMedGoogle Scholar
  54. 54.
    Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med. 2001;345(26):1863–9.  https://doi.org/10.1056/NEJMoa010866.CrossRefPubMedGoogle Scholar
  55. 55.
    Maintz D, Ozgun M, Hoffmeier A, Fischbach R, Kim WY, Stuber M, et al. Selective coronary artery plaque visualization and differentiation by contrast-enhanced inversion prepared MRI. Eur Heart J. 2006;27(14):1732–6.  https://doi.org/10.1093/eurheartj/ehl102.CrossRefPubMedGoogle Scholar
  56. 56.
    Kawasaki T, Koga S, Koga N, Noguchi T, Tanaka H, Koga H, et al. Characterization of hyperintense plaque with noncontrast T(1)-weighted cardiac magnetic resonance coronary plaque imaging: comparison with multislice computed tomography and intravascular ultrasound. JACC Cardiovasc Imaging. 2009;2(6):720–8.  https://doi.org/10.1016/j.jcmg.2009.01.016.CrossRefPubMedGoogle Scholar
  57. 57.
    Jansen CH, Perera D, Makowski MR, Wiethoff AJ, Phinikaridou A, Razavi RM, et al. Detection of intracoronary thrombus by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 2011;124(4):416–24.  https://doi.org/10.1161/CIRCULATIONAHA.110.965442.CrossRefPubMedGoogle Scholar
  58. 58.
    Xie Y, Kim YJ, Pang J, Kim JS, Yang Q, Wei J, et al. Coronary atherosclerosis T1-weighed characterization with integrated anatomical reference: comparison with high-risk plaque features detected by invasive coronary imaging. JACC Cardiovasc Imaging. 2017;10(6):637–48.  https://doi.org/10.1016/j.jcmg.2016.06.014.CrossRefPubMedGoogle Scholar
  59. 59.
    Matsumoto K, Ehara S, Hasegawa T, Sakaguchi M, Otsuka K, Yoshikawa J, et al. Localization of coronary high-intensity signals on T1-weighted MR imaging: relation to plaque morphology and clinical severity of angina pectoris. JACC Cardiovasc Imaging. 2015;8(10):1143–52.  https://doi.org/10.1016/j.jcmg.2015.06.013.CrossRefPubMedGoogle Scholar
  60. 60.
    • Noguchi T, Kawasaki T, Tanaka A, Yasuda S, Goto Y, Ishihara M, et al. High-intensity signals in coronary plaques on noncontrast T1-weighted magnetic resonance imaging as a novel determinant of coronary events. J Am Coll Cardiol. 2014;63(10):989–99.  https://doi.org/10.1016/j.jacc.2013.11.034 This study demonstrated an association between high intensity plaques and adverse coronary events. CrossRefPubMedGoogle Scholar
  61. 61.
    He Y, Da QY, An J, Song XT, Li DB. Coronary artery plaque imaging: comparison of black-blood MRI and 64-multidetector computed tomography. Chronic Dis Transl Med. 2016;2(3):159–65.  https://doi.org/10.1016/j.cdtm.2016.11.007.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    von Zur MC, Reiss S, Krafft AJ, Besch L, Menza M, Zehender M, et al. Coronary magnetic resonance imaging after routine implantation of bioresorbable vascular scaffolds allows non-invasive evaluation of vascular patency. PLoS One. 2018;13(1):e0191413.  https://doi.org/10.1371/journal.pone.0191413.CrossRefGoogle Scholar
  63. 63.
    Millon A, Boussel L, Brevet M, Mathevet JL, Canet-Soulas E, Mory C, et al. Clinical and histological significance of gadolinium enhancement in carotid atherosclerotic plaque. Stroke. 2012;43(11):3023–8.  https://doi.org/10.1161/STROKEAHA.112.662692.CrossRefPubMedGoogle Scholar
  64. 64.
    Schneeweis C, Schnackenburg B, Stuber M, Berger A, Schneider U, Yu J, et al. Delayed contrast-enhanced MRI of the coronary artery wall in takayasu arteritis. PLoS One. 2012;7(12):e50655.  https://doi.org/10.1371/journal.pone.0050655.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Varma N, Hinojar R, D'Cruz D, Arroyo Ucar E, Indermuehle A, Peel S, et al. Coronary vessel wall contrast enhancement imaging as a potential direct marker of coronary involvement: integration of findings from CAD and SLE patients. JACC Cardiovasc Imaging. 2014;7(8):762–70.  https://doi.org/10.1016/j.jcmg.2014.03.012.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ibrahim T, Makowski MR, Jankauskas A, Maintz D, Karch M, Schachoff S, et al. Serial contrast-enhanced cardiac magnetic resonance imaging demonstrates regression of hyperenhancement within the coronary artery wall in patients after acute myocardial infarction. JACC Cardiovasc Imaging. 2009;2(5):580–8.  https://doi.org/10.1016/j.jcmg.2008.12.029.CrossRefPubMedGoogle Scholar
  67. 67.
    Mora S, Yanek LR, Moy TF, Fallin MD, Becker LC, Becker DM. Interaction of body mass index and Framingham risk score in predicting incident coronary disease in families. Circulation. 2005;111(15):1871–6.  https://doi.org/10.1161/01.CIR.0000161956.75255.7B.CrossRefPubMedGoogle Scholar
  68. 68.
    Makowski MR, Jansen CHP, Ebersberger U, Schaeffter T, Razavi R, Mangino M, et al. Influence of acquired obesity on coronary vessel wall late gadolinium enhancement in discordant monozygote twins. Eur Radiol. 2017;27(11):4612–8.  https://doi.org/10.1007/s00330-016-4616-8.CrossRefPubMedGoogle Scholar
  69. 69.
    Engel LC, Landmesser U, Gigengack K, Wurster T, Manes C, Girke G, et al. Novel approach for in vivo detection of vulnerable coronary plaques using molecular 3-T CMR imaging with an albumin-binding probe. JACC Cardiovasc Imaging. 2018;12:297–306.  https://doi.org/10.1016/j.jcmg.2017.10.026.CrossRefPubMedGoogle Scholar
  70. 70.
    Dweck MR, Williams MC, Moss AJ, Newby DE, Fayad ZA. Computed tomography and cardiac magnetic resonance in ischemic heart disease. J Am Coll Cardiol. 2016;68(20):2201–16.  https://doi.org/10.1016/j.jacc.2016.08.047.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation. 2000;102(21):2582–7.CrossRefPubMedGoogle Scholar
  72. 72.
    Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, Helft G, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation. 2000;102(5):506–10.CrossRefPubMedGoogle Scholar
  73. 73.
    Sakuma H. Coronary CT versus MR angiography: the role of MR angiography. Radiology. 2011;258(2):340–9.  https://doi.org/10.1148/radiol.10100116.CrossRefPubMedGoogle Scholar
  74. 74.
    Yang Q, Li K, Liu X, Du X, Bi X, Huang F, et al. 3.0T whole-heart coronary magnetic resonance angiography performed with 32-channel cardiac coils: a single-center experience. Circ Cardiovasc Imaging. 2012;5(5):573–9.  https://doi.org/10.1161/CIRCIMAGING.112.974972.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Celeng C, de Keizer B, Merkely B, de Jong P, Leiner T, Takx RAP. PET molecular targets and near-infrared fluorescence imaging of atherosclerosis. Curr Cardiol Rep. 2018;20(2):11.  https://doi.org/10.1007/s11886-018-0953-3.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383(9918):705–13.  https://doi.org/10.1016/S0140-6736(13)61754-7.CrossRefPubMedGoogle Scholar
  77. 77.
    Puntmann VO, Valbuena S, Hinojar R, Petersen SE, Greenwood JP, Kramer CM, et al. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: part I—analytical validation and clinical qualification. J Cardiovasc Magn Reson. 2018;20(1):67.  https://doi.org/10.1186/s12968-018-0484-5.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Sakaguchi M, Hasegawa T, Ehara S, Matsumoto K, Mizutani K, Iguchi T, et al. New insights into spotty calcification and plaque rupture in acute coronary syndrome: an optical coherence tomography study. Heart Vessel. 2016;31(12):1915–22.  https://doi.org/10.1007/s00380-016-0820-3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Thomas Wurster
    • 1
    • 2
    Email author
  • Ulf Landmesser
    • 1
    • 2
    • 3
  • Leif-Christopher Engel
    • 1
    • 2
  • Boris Bigalke
    • 1
  • Marcus Makowski
    • 4
  1. 1.Klinik für Kardiologie, Charité Campus Benjamin FranklinUniversitätsmedizin BerlinBerlinGermany
  2. 2.Berlin Institute of HealthBerlinGermany
  3. 3.DZHK (German Centre for Cardiovascular Research), Partner SiteBerlinGermany
  4. 4.Klinik für Radiologie, Charité Campus MitteUniversitätsmedizin BerlinBerlinGermany

Personalised recommendations