Advertisement

Radionuclide Imaging in Chagas Cardiomyopathy

  • Marcus Vinicius SimõesEmail author
  • Leonardo Pippa Gadioli
  • Luciano Fonseca Lemos de Oliveira
Cardiac Nuclear Imaging (A Cuocolo and M Petretta, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Cardiac Nuclear Imaging

Abstract

Purpose of Review

To review the contributions of radionuclide imaging to understanding the manifestations and pathophysiology of chronic Chagas cardiomyopathy (CCC).

Recent Findings

Experimental studies using high-resolution SPECT myocardial perfusion imaging (MPI) show that myocardial perfusion derangement that corresponds to dysfunctional, viable myocardium is closely linked to inflammation and precedes LV regional systolic dysfunction. Clinical studies show that microvascular ischemia is strictly related to the areas of cardiac sympathetic denervation, assessed by 123I-MIBG imaging, which correlates with severe ventricular arrhythmia incidence. Initial case reports suggest that 18F-FDG-PET imaging is a promising, non-invasive detection method for myocardial inflammation.

Summary

Available evidence indicates that microvascular ischemia participates in the mechanisms causing myocardial injury in CCC, with potential implication for monitoring subclinical disease progression. Moreover, MIBG imaging is a promising tool for risk stratification of sudden death. Preliminary clinical experience suggests a role for 18F-FDG-PET in detection of inflammation in CCC.

Keywords

Chagas disease Cardiomyopathy Radionuclide imaging Scintigraphy Myocardial perfusion Myocarditis 

Notes

Compliance with Ethical Standards

Conflict of Interest

Marcus Vinicius Simões, Leonardo Pippa Gadioli, and Luciano Fonseca Lemos de Oliveira declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Chagas disease in Latin America: an epidemiological update based on 2010 estimates. World Health Organization. Wkly Epidemiol Rec. 2015;90:33–43.Google Scholar
  2. 2.
    Benziger CP, do Carmo GA, Ribeiro AL. Chagas cardiomyopathy: clinical presentation and management in the Americas. Cardiol Clin. 2017;35:31–47.CrossRefGoogle Scholar
  3. 3.
    Requena-Méndez A, Aldasoro E, de Lazzari E, Sicuri E, Brown M, Moore DAJ, et al. Prevalence of Chagas disease in Latin-American migrants living in Europe: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2015;9:e0003540.CrossRefGoogle Scholar
  4. 4.
    Traina MI, Hernandez S, Sanchez DR, Dufani J, Salih M, Abuhamidah AM, et al. Prevalence of Chagas disease in a U.S. population of Latin American immigrants with conduction abnormalities on electrocardiogram. PLoS Negl Trop Dis. 2017;11:e0005244.CrossRefGoogle Scholar
  5. 5.
    Dias JC. The indeterminate form of human chronic Chagas’ disease. A clinical epidemiological review. Rev Soc Bras Med Trop. 1989;22:147–56.CrossRefGoogle Scholar
  6. 6.
    Bocchi EA, Bestetti RB, Scanavacca MI, Cunha Neto E, Issa VS. Chronic Chagas heart disease management: from etiology to cardiomyopathy treatment. J Am Coll Cardiol. 2017;70:1510–24.CrossRefGoogle Scholar
  7. 7.
    Marin-Neto JA, Cunha-Neto E, Maciel BC, Simões MV. Pathogenesis of chronic Chagas heart disease. Circulation. 2007;115:1109–23.CrossRefGoogle Scholar
  8. 8.
    Simões MV, Oliveira LF, Hiss FC, Figueiredo AB, Pintya AO, Maciel BC, et al. Characterization of the apical aneurysm of chronic Chagas’ heart disease by scintigraphic image co-registration. Arq Bras Cardiol. 2007;89(2):119–21 131-4.CrossRefGoogle Scholar
  9. 9.
    Velasco A, Morillo CA. Chagas heart disease: a contemporary review. J Nucl Cardiol. 2018.  https://doi.org/10.1007/s12350-018-1361-1.
  10. 10.
    Ayub-Ferreira SM, Mangini S, Issa VS, Cruz FD, Bacal F, Guimarães GV, et al. Mode of death on Chagas heart disease: comparison with other etiologies. A subanalysis of the REMADHE prospective trial. PLoS Negl Trop Dis. 2013;7(4):e2176.CrossRefGoogle Scholar
  11. 11.
    Nunes MCP, Badano LP, Marin-Neto JA, Edvardsen T, Fernández-Golfín C, Bucciarelli-Ducci C, et al. Multimodality imaging evaluation of Chagas disease: an expert consensus of Brazilian cardiovascular imaging department (DIC) and the European Association of Cardiovascular Imaging (EACVI). Eur Heart J Cardiovasc Imaging. 2018;19(4):459–460n.  https://doi.org/10.1093/ehjci/jex154.CrossRefPubMedGoogle Scholar
  12. 12.
    Feit A, El-Sherif N, Korostoff S. Chagas’ disease masquerading as coronary artery disease. Arch Intern Med. 1983;143(1):144–5.CrossRefGoogle Scholar
  13. 13.
    Hagar JM, Rahimtoola SH. Chagas’ heart disease in the United States. N Engl J Med. 1991;325(11):763–8.CrossRefGoogle Scholar
  14. 14.
    Marin-Neto JA, Marzullo P, Marcassa C, Gallo Junior L, Maciel BC, Bellina CR, et al. Myocardial perfusion abnormalities in chronic Chagas’ disease as detected by thallium-201 scintigraphy. Am J Cardiol. 1992;69(8):780–4.CrossRefGoogle Scholar
  15. 15.
    Simoes MV, Pintya AO, Bromberg-Marin G, Sarabanda AV, Antloga CM, Pazin-Filho A, et al. Relation of regional sympathetic denervation and myocardial perfusion disturbance to wall motion impairment in Chagas’ cardiomyopathy. Am J Cardiol. 2000;86(9):975–81.CrossRefGoogle Scholar
  16. 16.
    Peix A, Garcia R, Sanchez J, Cabrera LO, Padron K, Vedia O, et al. Myocardial perfusion imaging and cardiac involvement in the indeterminate phase of Chagas disease. Arq Bras Cardiol. 2013;100(2):114–7.CrossRefGoogle Scholar
  17. 17.
    Hiss FC, Lascala TF, Maciel BC, Marin-Neto JA, Simoes MV. Changes in myocardial perfusion correlate with deterioration of left ventricular systolic function in chronic Chagas’ cardiomyopathy. J Am Coll Cardiol Img. 2009;2(2):164–72.CrossRefGoogle Scholar
  18. 18.
    Schwartz RG, Wexler O. Early identification and monitoring progression of Chagas’ cardiomyopathy with SPECT myocardial perfusion imaging. JACC Cardiovasc Imaging. 2009;2(2):173–5.CrossRefGoogle Scholar
  19. 19.
    •• Lemos de Oliveira LF, Thackeray JT, Marin Neto JA, Dias Romano MM, Vieira de Carvalho EE, Mejia J, et al. Regional Myocardial Perfusion Disturbance in Experimental Chronic Chagas Cardiomyopathy. J Nucl Med. 2018;59(9):1430–6 This paper is the first to describe the findings of high-resolution SPECT perfusion and 18 F-FDG PET images in a experimental model of chronic chagas disease in hamsters, showing the correlation between myocardial perfusion disturbance and underlying inflammatory changes. CrossRefGoogle Scholar
  20. 20.
    • Tanaka DM, de Oliveira LFL, Marin-Neto JA, Romano MMD, de Carvalho EEV, de Barros Filho ACL, et al. Prolonged dipyridamole administration reduces myocardial perfusion defects in experimental chronic Chagas cardiomyopathy. J Nucl Cardiol. 2018.  https://doi.org/10.1007/s12350-018-1198-7 In this paper, the authors show the improvement of myocardial perfusion following the chronic administration of a microvascular dilator agent, reinforcing the hypothesis of participation of myocardial ischemia in the mechanism leading to cardiac dysfunction progression in CCC.
  21. 21.
    Marin-Neto JA, Simões MV, Rassi Junior A. Pathogenesis of chronic Chagas cardiomyopathy: the role of coronary microvascular derangements. Rev Soc Bras Med Trop. 2013;46(5):536–41.CrossRefGoogle Scholar
  22. 22.
    Petretta M, Cuocolo A. The long way to defeating Chagas cardiomyopathy. J Nucl Cardiol. 2018.  https://doi.org/10.1007/s12350-018-1238-3.
  23. 23.
    Köberle F. Cardiopathia parasympaticopriva. München Med Wschr. 1959;101:1308–10.Google Scholar
  24. 24.
    Mott KE, Hagstrom JW. The pathologic lesions of the cardiac autonomic nervous system in chronic Chagas’ myocarditis. Circulation. 1965;31:273–86.CrossRefGoogle Scholar
  25. 25.
    Marin-Neto JA, Bromberg-Marin G, Pazin-Filho A, Simões MV, Maciel BC. Cardiac autonomic impairment and early myocardial damage involving the right ventricle are independent phenomena in Chagas’ disease. Int J Cardiol. 1998;65:261–9.CrossRefGoogle Scholar
  26. 26.
    Marino VSP, Dumont SM, Mota LDG, Braga DS, Freitas SS, Moreira MDCV. Sympathetic Dysautonomia in heart failure by 123I-MIBG: comparison between Chagasic, non-Chagasic and heart transplant patients. Arq Bras Cardiol. 2018 Aug;111(2):182–90.PubMedPubMedCentralGoogle Scholar
  27. 27.
    • Barizon GC, Simões MV, Schmidt A, Gadioli LP, Murta-Junior LO. Relationship between microvascular changes, autonomic denervation, and myocardial fibrosis in Chagas cardiomyopathy: evaluation by MRI and SPECT imaging. J Nucl Cardiol. 2018.  https://doi.org/10.1007/s12350-018-1290-z This papers describes, by employing multiple imaging modalities corregistration in patients with CCC, the close topographic and quantitative correlation among microvascular ischemia and sympathetic denervation.
  28. 28.
    Bengel FM, Barthel P, Matsunari I, Schmidt G, Schwaiger M. Kinetics of 123I-MIBG after acute myocardial infarction and reperfusion therapy. J Nucl Med. 1999 Jun;40(6):904–10.PubMedGoogle Scholar
  29. 29.
    Simões MV, Barthel P, Matsunari I, Nekolla SG, Schömig A, Schwaiger M, et al. Presence of sympathetically denervated but viable myocardium and its electrophysiologic correlates after early revascularised, acute myocardial infarction. Eur Heart J. 2004 Apr;25(7):551–7.CrossRefGoogle Scholar
  30. 30.
    Miranda CH, Figueiredo AB, Maciel BC, Marin-Neto JA, Simoes MV. Sustained ventricular tachycardia is associated with regional myocardial sympathetic denervation assessed with 123I-metaiodobenzylguanidine in chronic Chagas cardiomyopathy. J Nucl Med. 2011;52(4):504–10.CrossRefGoogle Scholar
  31. 31.
    •• Gadioli LP, Miranda CH, Pintya AO, de Figueiredo AB, Schmidt A, Maciel BC, et al. The severity of ventricular arrhythmia correlates with the extent of myocardial sympathetic denervation, but not with myocardial fibrosis extent in chronic Chagas cardiomyopathy: Chagas disease, denervation and arrhythmia. J Nucl Cardiol. 2018;25(1):75–83 This paper shows a quantitative correlation between the extent of sympathetic denervation and the severity of incident ventricular arrhythmia, indicating a potential role of MIBG imaging in risk stratify the risk of sudden death in CCC patients. CrossRefGoogle Scholar
  32. 32.
    Rassi A Jr, Rassi SG, Rassi A. Sudden death in Chagas’ disease. Arq Bras Cardiol. 2001;76(1):75–96.CrossRefGoogle Scholar
  33. 33.
    Garg G, Cohen S, Neches R, Travin MI. Cardiac (18)F-FDG uptake in chagas disease. J Nucl Cardiol. 2016;23(2):321–5.CrossRefGoogle Scholar
  34. 34.
    Salimy MS, Parwani PJ, Mukai K, Pampaloni MH, Flavell RR. Abnormal 18F-FDG and 82Rb PET findings in Chagas heart disease. Clin Nucl Med. 2017;42(5):e265–8.CrossRefGoogle Scholar
  35. 35.
    Shapiro H, Meymandi S, Shivkumar K, Bradfield JS. Cardiac inflammation and ventricular tachycardia in Chagas disease. Heart Rhythm Case Rep. 2017;3(8):392–5.  https://doi.org/10.1016/j.hrcr.2017.05.007 eCollection 2017 Aug.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Marcus Vinicius Simões
    • 1
    • 2
    Email author
  • Leonardo Pippa Gadioli
    • 1
  • Luciano Fonseca Lemos de Oliveira
    • 1
  1. 1.Division of Cardiology, Internal Medicine DepartmentMedical School of Ribeirão Preto - University of São PauloRibeirão PretoBrazil
  2. 2.Cardiology Division – Internal Medicine DepartmentHospital das Clínicas, Faculdade de Medicina de Ribeirão PretoRibeirão PretoBrazil

Personalised recommendations