Imaging Options in Cardiac Amyloidosis: Differentiating AL from ATTR

  • Sumeet Pawar
  • Muhammad Haq
  • Frederick L. Ruberg
  • Edward J. MillerEmail author
Emerging Debates and Concepts (V Dilsizian and T Schindler, section editors)
Part of the following topical collections:
  1. Topical Collection on Emerging Debates and Concepts


Purpose of Review

Cardiac amyloidosis (CA) results from the myocardial deposition of abnormally folded endogenous proteins leading to significant morbidity and mortality. Accurate and timely non-invasive diagnosis of cardiac amyloidosis and the correct identification of amyloid type are critical for choosing appropriate therapy. Disease type is defined by the precursor protein and most typically involves light chain (AL) or transthyretin (ATTR). Traditionally, cardiac amyloidosis has been suspected on the basis of characteristic echocardiographic features and confirmed with endomyocardial biopsy. Recent advances in echocardiography, cardiovascular magnetic resonance (CMR), and nuclear imaging now permit the non-invasive diagnosis of CA with a high degree of confidence and, in some cases, assignment of amyloid types.

Recent Findings

CMR techniques including late gadolinium enhancement and new protocols such as T1 mapping and extra-cellular volume (ECV) quantification have afforded insight into the diagnosis and pathophysiology of cardiac amyloidosis, while bone-avid nuclear tracers can identify ATTR with a high degree of accuracy.


We highlight the recent advances in imaging techniques that can identify cardiac amyloidosis with a special emphasis on nuclear modalities used for differentiating light chain from transthyretin disease.


Cardiac amyloidosis Multimodality imaging Transthyretin Light chain amyloidosis 


Compliance with Ethical Standards

Conflict of Interest

Sumeet Pawar, Muhammad Haq, Frederick L. Ruberg, and Edward J. Miller declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med. 2003;349:583–96.CrossRefPubMedGoogle Scholar
  2. 2.
    Kyle RA, Linos A, Beard CM, Linke RP, Gertz MA, O’Fallon WM, et al. Incidence and natural history of primary systemic amyloidosis in Olmsted County, Minnesota, 1950 through 1989. Blood. 1992;79:1817–22.PubMedGoogle Scholar
  3. 3.
    González-López E, Gallego-Delgado M, Guzzo-Merello G, de Haro-del Moral FJ , Cobo-Marcos M, Robles C, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J. 2015;ehv338.Google Scholar
  4. 4.
    Dubrey SW, Cha K, Anderson J, Chamarthi B, Reisinger J, Skinner M, et al. The clinical features of immunoglobulin light-chain (AL) amyloidosis with heart involvement. QJM Mon J Assoc Physicians. 1998;91:141–57.CrossRefGoogle Scholar
  5. 5.
    Sanchorawala V, Sun F, Quillen K, Sloan JM, Berk JL, Seldin DC. Long-term outcome of patients with AL amyloidosis treated with high-dose melphalan and stem cell transplantation: 20 year experience. Blood. 2015;blood-2015-08-662726.Google Scholar
  6. 6.
    Madan S, Kumar SK, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al. High-dose melphalan and peripheral blood stem cell transplantation for light-chain amyloidosis with cardiac involvement. Blood. 2012;119:1117–22.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rapezzi C, Merlini G, Quarta CC, Riva L, Longhi S, Leone O, et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation. 2009;120:1203–12.CrossRefPubMedGoogle Scholar
  8. 8.
    Selvanayagam JB, Hawkins PN, Paul B, Myerson SG, Neubauer S. Evaluation and management of the cardiac amyloidosis. J Am Coll Cardiol. 2007;50:2101–10.CrossRefPubMedGoogle Scholar
  9. 9.
    Ruberg FL, Berk JL. Transthyretin (TTR) cardiac amyloidosis. Circulation. 2012;126:1286–300.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Falk RH, Quarta CC, Dorbala S. How to image cardiac amyloidosis. Circ. Cardiovasc. Imaging. 2014;7:552–62.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Plehn JF, Southworth J, Cornwell GGI. Atrial systolic failure in primary amyloidosis. N Engl J Med. 1992;327:1570–3.CrossRefPubMedGoogle Scholar
  12. 12.
    Dubrey S, Pollak A, Skinner M, Falk RH. Atrial thrombi occurring during sinus rhythm in cardiac amyloidosis: evidence for atrial electromechanical dissociation. Br Heart J. 1995;74:541–4.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rapezzi C, Quarta CC, Riva L, Longhi S, Gallelli I, Lorenzini M, et al. Transthyretin-related amyloidoses and the heart: a clinical overview. Nat Rev Cardiol. 2010;7:398–408.CrossRefPubMedGoogle Scholar
  14. 14.
    Rahman JE, Helou EF, Gelzer-Bell R, Thompson RE, Kuo C, Rodriguez ER, et al. Noninvasive diagnosis of biopsy-proven cardiac amyloidosis. J Am Coll Cardiol. 2004;43:410–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Shah AM, Solomon SD. Myocardial deformation imaging. Circulation. 2012;125:e244–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Koyama J, Ray-Sequin PA, Falk RH. Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation. 2003;107:2446–52.CrossRefPubMedGoogle Scholar
  17. 17.
    Bellavia D, Pellikka PA, Dispenzieri A, Scott CG, Al-Zahrani GB, Grogan M, et al. Comparison of right ventricular longitudinal strain imaging, tricuspid annular plane systolic excursion, and cardiac biomarkers for early diagnosis of cardiac involvement and risk stratification in primary systematic (AL) amyloidosis: a 5-year cohort study. Eur Heart J Cardiovasc Imaging. 2012;13:680–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Phelan D, Collier P, Thavendiranathan P, Popović ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98:1442–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Baccouche H, Maunz M, Beck T, Gaa E, Banzhaf M, Knayer U, et al. Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiogr Mt Kisco N. 2012;29:668–77.CrossRefGoogle Scholar
  20. 20.
    Quarta CC, Solomon SD, Uraizee I, Kruger J, Longhi S, Ferlito M, et al. Left ventricular structure and function in transthyretin-related versus light-chain cardiac amyloidosis CLINICAL PERSPECTIVE. Circulation. 2014;129:1840–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Buss SJ, Emami M, Mereles D, Korosoglou G, Kristen AV, Voss A, et al. Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers. J Am Coll Cardiol. 2012;60:1067–76.CrossRefPubMedGoogle Scholar
  22. 22.
    Koyama J, Falk RH. Prognostic significance of strain Doppler imaging in light-chain amyloidosis. JACC Cardiovasc. Imaging. 2010;3:333–42.CrossRefPubMedGoogle Scholar
  23. 23.
    Bellavia D, Pellikka PA, Al-Zahrani GB, Abraham TP, Dispenzieri A, Miyazaki C, et al. Independent predictors of survival in primary systemic (Al) amyloidosis, including cardiac biomarkers and left ventricular strain imaging: an observational cohort study. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2010;23:643–52.CrossRefGoogle Scholar
  24. 24.
    Gertz MA, Comenzo R, Falk RH, Fermand JP, Hazenberg BP, Hawkins PN, et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18-22 April 2004. Am J Hematol. 2005;79:319–28.CrossRefPubMedGoogle Scholar
  25. 25.
    Ng B, Connors LH, Davidoff R, Skinner M, Falk RH. Senile systemic amyloidosis presenting with heart failure: a comparison with light chain-associated amyloidosis. Arch Intern Med. 2005;165:1425–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Ruberg FL, Nezafat R. CMR visualization of cardiac amyloid infiltration: challenges and opportunities. Circulation. 2015;2015(132):1525–7.CrossRefGoogle Scholar
  27. 27.
    Maceira AM. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005;111:186–93.CrossRefPubMedGoogle Scholar
  28. 28.
    van den Driesen RI, Slaughter RE, Strugnell WE. MR findings in cardiac amyloidosis. AJR Am J Roentgenol. 2006;186:1682–5.CrossRefGoogle Scholar
  29. 29.
    Vogelsberg H, Mahrholdt H, Deluigi CC, Yilmaz A, Kispert EM, Greulich S, et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis. J Am Coll Cardiol. 2008;51:1022–30.CrossRefPubMedGoogle Scholar
  30. 30.
    Ruberg FL, Appelbaum E, Davidoff R, Ozonoff A, Kissinger KV, Harrigan C, et al. Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in light-chain cardiac amyloidosis. Am J Cardiol. 2009;103:544–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Deux J-F, Damy T, Rahmouni A, Mayer J, Planté-Bordeneuve V. Noninvasive detection of cardiac involvement in patients with hereditary transthyretin associated amyloidosis using cardiac magnetic resonance imaging: a prospective study. Amyloid. 2014;21:246–55.CrossRefPubMedGoogle Scholar
  32. 32.
    Lehrke S, Steen H, Kristen AV, Merten C, Lossnitzer D, Dengler TJ, et al. Serum levels of NT-proBNP as surrogate for cardiac amyloid burden: new evidence from gadolinium-enhanced cardiac magnetic resonance imaging in patients with amyloidosis. Amyloid. 2009;16:187–95.CrossRefPubMedGoogle Scholar
  33. 33.
    Austin BA, Tang WHW, Rodriguez ER, Tan C, Flamm SD, Taylor DO, et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc. Imaging. 2009;2:1369–77.CrossRefPubMedGoogle Scholar
  34. 34.
    White JA, Kim HW, Shah D, Fine N, Kim K-Y, Wendell DC, et al. CMR imaging with rapid visual T1 assessment predicts mortality in patients suspected of cardiac amyloidosis. JACC Cardiovasc. Imaging. 2014;7:143–56.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mekinian A, Lions C, Leleu X, Duhamel A, Lamblin N, Coiteux V, et al. Prognosis assessment of cardiac involvement in systemic AL amyloidosis by magnetic resonance imaging. Am J Med. 2010;123:864–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Raina S, Lensing SY, Nairooz RS, Pothineni NVK, Hakeem A, Bhatti S, et al. Prognostic value of late gadolinium enhancement CMR in systemic amyloidosis. JACC Cardiovasc. Imaging. 2016; doi: 10.1016/j.jcmg.2016.01.036.PubMedGoogle Scholar
  37. 37.
    Minutoli F, Bella GD, Mazzeo A, Donato R, Russo M, Scribano E, et al. Comparison between 99m Tc-diphosphonate imaging and MRI with late gadolinium enhancement in evaluating cardiac involvement in patients with transthyretin familial amyloid polyneuropathy. Am J Roentgenol. 2013;200:W256–65.CrossRefGoogle Scholar
  38. 38.
    •• Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2015;132:1570–9. This is the largest CMR study of cardiac amyloidosis to date, showing the incremental value of the phase-sensitive inversion recovery (PSIR) in reliably identifying late gadolinium enhancement. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mongeon F-P, Jerosch-Herold M, Coelho-Filho OR, Blankstein R, Falk RH, Kwong RY. Quantification of extracellular matrix expansion by CMR in infiltrative heart disease. JACC Cardiovasc. Imaging. 2012;5:897–907.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Banypersad SM, Sado DM, Flett AS, Gibbs SDJ, Pinney JH, Maestrini V, et al. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ. Cardiovasc. Imaging. 2013;6:34–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc. Imaging. 2013;6:488–97.CrossRefPubMedGoogle Scholar
  42. 42.
    Brooks J, Kramer CM, Salerno M. Markedly increased volume of distribution of gadolinium in cardiac amyloidosis demonstrated by T 1 mapping: T 1 mapping and VD in amyloidosis. J Magn Reson Imaging. 2013;38:1591–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc. Imaging. 2014;7:157–65.CrossRefPubMedGoogle Scholar
  44. 44.
    Dungu JN, Valencia O, Pinney JH, Gibbs SDJ, Rowczenio D, Gilbertson JA, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis. JACC Cardiovasc. Imaging. 2014;7:133–42.CrossRefPubMedGoogle Scholar
  45. 45.
    Fontana M, Banypersad SM, Treibel TA, Abdel-Gadir A, Maestrini V, Lane T, et al. Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: a cardiac MR imaging study. Radiology. 2015;277:388–97.CrossRefPubMedGoogle Scholar
  46. 46.
    Falk RH, Lee VW, Rubinow A, Hood WB, Cohen AS. Sensitivity of technetium-99m-pyrophosphate scintigraphy in diagnosing cardiac amyloidosis. 1983; 51:826–830.Google Scholar
  47. 47.
    • Dorbala S, Bokhari S, Miller EJ, Bullock-Palmer R, Soman P, Thompson R. ASNC practice points 99mTechnetium-pyrophosphate imaging for transthyretin cardiac amyloidosis [Internet]. 2016 [cited 2016 Aug 3]. Available from: This easy-to-read document from the American Society of Nuclear Cardiology summarizes the practical aspects of 99mTechnetium pyrophosphate imaging into an accessible fact sheet for the clinician.
  48. 48.
    Bokhari S, Morgenstern R, Weinberg R, Kinkhabwala M, Panagiotou D, Castano A, et al. Standardization of (99m) technetium pyrophosphate imaging methodology to diagnose TTR cardiac amyloidosis. J Nucl Cardiol. 2016; doi: 10.1007/s12350-016-0610-4.Google Scholar
  49. 49.
    Puille M, Altland K, Linke RP, Steen-Müller MK, Kiett R, Steiner D, et al. 99mTc-DPD scintigraphy in transthyretin-related familial amyloidotic polyneuropathy. Eur J Nucl Med Mol Imaging. 2002;29:376–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Quarta CC, Guidalotti PL, Longhi S, Pettinato C, Leone O, Ferlini A, et al. Defining the diagnosis in echocardiographically suspected senile systemic amyloidosis. JACC Cardiovasc. Imaging. 2012;5:755–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Rapezzi C, Quarta CC, Guidalotti PL, Pettinato C, Fanti S, Leone O, et al. Role of 99mTc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis. JACC Cardiovasc. Imaging. 2011;4:659–70.CrossRefPubMedGoogle Scholar
  52. 52.
    Hutt DF, Quigley A-M, Page J, Hall ML, Burniston M, Gopaul D, et al. Utility and limitations of 3, 3-diphosphono-1, 2-propanodicarboxylic acid scintigraphy in systemic amyloidosis. Eur Heart J Cardiovasc Imaging. 2014;15:1289–98.CrossRefPubMedGoogle Scholar
  53. 53.
    Perugini E, Guidalotti PL, Salvi F, Cooke RMT, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3, 3-diphosphono-1, 2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46:1076–84.CrossRefPubMedGoogle Scholar
  54. 54.
    Rapezzi C, Quarta CC, Guidalotti PL, Longhi S, Pettinato C, Leone O, et al. Usefulness and limitations of 99mTc-3, 3-diphosphono-1, 2-propanodicarboxylic acid scintigraphy in the aetiological diagnosis of amyloidotic cardiomyopathy. Eur J Nucl Med Mol Imaging. 2011;38:470–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Galat A, Rosso J, Guellich A, Van Der Gucht A, Rappeneau S, Bodez D, et al. Usefulness of (99m)Tc-HMDP scintigraphy for the etiologic diagnosis and prognosis of cardiac amyloidosis. Amyloid Int. J. Exp. Clin. Investig. Off. J. Int. Soc. Amyloidosis. 2015;22:210–20.CrossRefGoogle Scholar
  56. 56.
    Galat A, Van Der Gucht A, Colombat M, Attias D, Itti E, Meignan M, et al. (99 m)Tc-HMDP scintigraphy rectifies wrong diagnosis of AL amyloidosis. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2015;22:853–7.Google Scholar
  57. 57.
    Bokhari S, Castano A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. 99mTc-Pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ. Cardiovasc. Imaging. 2013;6:195–201.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    • Castano A, Haq M, Narotsky DL, et al. Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: predicting survival for patients with attr cardiac amyloidosis. JAMA Cardiol. 2016; doi: 10.1001/jamacardio.2016.2839. This multicenter study demonstrates the prognostic significance of 99mTechnetium pyrophosphate cardiac uptake in patients followed over a 5-year period. PubMedGoogle Scholar
  59. 59.
    •• Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Non-biopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133:2404–12. This large multicenter study which included all three bone tracers demonstrates the ability of nuclear imaging for making the non-invasive diagnosis of transthyretin disease and potentially obviating the need for endomyocardial biopsy. CrossRefPubMedGoogle Scholar
  60. 60.
    Haq M, Pawar S, Berk JL, Miller EJ, Ruberg FL. Can 99m-Tc-pyrophosphate aid in early detection of cardiac involvement in asymptomatic variant TTR amyloidosis? JACC Cardiovasc. Imaging. 2016; doi: 10.1016/j.jcmg.2016.06.003.PubMedGoogle Scholar
  61. 61.
    Glaudemans AWJM, van Rheenen RWJ, van den Berg MP, Noordzij W, Koole M, Blokzijl H, et al. Bone scintigraphy with 99m technetium-hydroxymethylene diphosphonate allows early diagnosis of cardiac involvement in patients with transthyretin-derived systemic amyloidosis. Amyloid. 2014;21:35–44.CrossRefPubMedGoogle Scholar
  62. 62.
    Kristen AV, Scherer K, Buss S, aus dem Siepen F, Haufe S, Bauer R, et al. Noninvasive risk stratification of patients with transthyretin amyloidosis. JACC Cardiovasc Imaging. 2014;7:502–10.CrossRefPubMedGoogle Scholar
  63. 63.
    Gucht AVD, Galat A, Itti E, Guellich A, Rappeneau S, Dubois-Randé JL, et al. 99mTc HMDP myocardial scintigraphy is predictive of major adverse cardiac event (MACE) in patients with transthyretin-type (TTR) amyloidosis. J Nucl Med. 2015;56:27.Google Scholar
  64. 64.
    Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55:2212–21.CrossRefPubMedGoogle Scholar
  65. 65.
    Tanaka M, Hongo M, Kinoshita O, Takabayashi Y, Fujii T, Yazaki Y, et al. Iodine-123 metaiodobenzylguanidine scintigraphic assessment of myocardial sympathetic innervation in patients with familial amyloid polyneuropathy. J Am Coll Cardiol. 1997;29:168–74.CrossRefPubMedGoogle Scholar
  66. 66.
    Coutinho CA, Conceição I, Almeida A, Cantinho G, Sargento L, Vagueiro MC. Early detection of sympathetic myocardial denervation in patients with familial amyloid polyneuropathy type I. Rev Port Cardiol Orgão Of Soc Port Cardiol Port J Cardiol Off J Port Soc Cardiol. 2004;23:201–11.Google Scholar
  67. 67.
    Delahaye N, Rouzet F, Sarda L, Tamas C, Dinanian S, Plante-Bordeneuve V, et al. Impact of liver transplantation on cardiac autonomic denervation in familial amyloid polyneuropathy. Medicine (Baltimore). 2006;85:229–38.CrossRefGoogle Scholar
  68. 68.
    Coutinho MCA, Cortez-Dias N, Cantinho G, Conceição I, Oliveira A, Bordalo e SA, et al. Reduced myocardial 123-iodine metaiodobenzylguanidine uptake a prognostic marker in familial amyloid polyneuropathy. Circ Cardiovasc Imaging. 2013;6:627–36.CrossRefPubMedGoogle Scholar
  69. 69.
    Hongo M, Urushibata K, Kai R, Takahashi W, Koizumi T, Uchikawa S, et al. Iodine-123 metaiodobenzylguanidine scintigraphic analysis of myocardial sympathetic innervation in patients with AL (primary) amyloidosis. Am Heart J. 2002;144:122–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305:275–83.CrossRefPubMedGoogle Scholar
  71. 71.
    Dorbala S, Vangala D, Semer J, Strader C, Bruyere JR, Di Carli MF, et al. Imaging cardiac amyloidosis: a pilot study using 18F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging. 2014;41:1652–62.CrossRefPubMedGoogle Scholar
  72. 72.
    Park M-A, Padera RF, Belanger A, Dubey S, Hwang DH, Veeranna V, et al. 18F-Florbetapir binds specifically to myocardial light chain and transthyretin amyloid deposits: an autoradiography study. Circ Cardiovasc Imaging. 2015;8:e002954. doi: 10.1161/CIRCIMAGING.114.002954.CrossRefPubMedGoogle Scholar
  73. 73.
    Law WP, Wang WYS, Moore PT, Mollee PN, Ng ACT. Cardiac amyloid imaging with 18F-florbetaben positron emission tomography: a pilot study. J Nucl Med. 2016;57:1733–9.CrossRefPubMedGoogle Scholar
  74. 74.
    Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjö L, et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med. 2013;54:213–20.CrossRefPubMedGoogle Scholar
  75. 75.
    Lee S-P, Lee ES, Choi H, Im H-J, Koh Y, Lee M-H, et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging. 2015;8:50–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sumeet Pawar
    • 1
  • Muhammad Haq
    • 2
  • Frederick L. Ruberg
    • 3
  • Edward J. Miller
    • 4
    Email author
  1. 1.Department of MedicineBoston University School of Medicine and Boston Medical CenterBostonUSA
  2. 2.Department of Internal MedicineBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA
  3. 3.Department of Medicine, Section of Cardiovascular Medicine, Amyloidosis CenterBoston University School of Medicine and Boston Medical CenterBostonUSA
  4. 4.Section of Cardiovascular MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations