Subclinical Myocardial Disease in Heart Failure Detected by CMR

  • Yoshiaki Ohyama
  • Gustavo J. Volpe
  • Joao A. C. Lima
Heart Failure and Targeted Imaging (T Schindler and E Schelbert, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Heart Failure and Targeted Imaging

Abstract

Noninvasive cardiac imaging plays a central role in the assessment of patients with heart failure at all stages of disease. Moreover, this role can be even more important for individuals with asymptomatic cardiac functional or structural abnormalities―subclinical myocardial disease ― because they could have benefits from early interventions before the onset of clinical heart failure. In this sense, cardiac magnetic resonance offers not only precise global cardiac function and cardiac structure, but also more detailed regional function and tissue characterization by recent developing methods. In this section, some of the main methods available for subclinical myocardial disease detection are reviewed in terms of what they can provide and how they can improve heart failure assessment.

Keywords

Cardiac magnetic resonance Heart failure Myocardial tagging Late gadolinium enhancement T1 mapping 

Reference

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–245. doi:10.1161/CIR.0b013e31828124ad.PubMedCrossRefGoogle Scholar
  2. 2.
    Dayer M, Cowie MR. Heart failure: diagnosis and healthcare burden. Clin Med. 2004;4(1):13–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239. doi:10.1016/j.jacc.2013.05.019.PubMedCrossRefGoogle Scholar
  4. 4.
    Sechtem U, Mahrholdt H, Vogelsberg H. Cardiac magnetic resonance in myocardial disease. Heart. 2007;93(12):1520–7. doi:10.1136/hrt.2005.067355.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322(22):1561–6. doi:10.1056/NEJM199005313222203.PubMedCrossRefGoogle Scholar
  6. 6.
    Bluemke DA, Kronmal RA, Lima JA, Liu K, Olson J, Burke GL, et al. The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol. 2008;52(25):2148–55. doi:10.1016/j.jacc.2008.09.014.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Solomon SD, Anavekar N, Skali H, McMurray JJ, Swedberg K, Yusuf S, et al. Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation. 2005;112(24):3738–44. doi:10.1161/CIRCULATIONAHA.105.561423.PubMedCrossRefGoogle Scholar
  8. 8.
    Abraham TP, Dimaano VL, Liang HY. Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation. 2007;116(22):2597–609. doi:10.1161/CIRCULATIONAHA.106.647172.PubMedCrossRefGoogle Scholar
  9. 9.
    Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol. 2006;47(4):789–93. doi:10.1016/j.jacc.2005.10.040.PubMedCrossRefGoogle Scholar
  10. 10.
    Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JA, Smiseth OA. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation. 2002;106(1):50–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Osman NF, McVeigh ER, Prince JL. Imaging heart motion using harmonic phase MRI. IEEE Trans Med Imaging. 2000;19(3):186–202. doi:10.1109/42.845177.PubMedCrossRefGoogle Scholar
  12. 12.
    Osman NF, Prince JL. Visualizing myocardial function using HARP MRI. Phys Med Biol. 2000;45(6):1665–82.PubMedCrossRefGoogle Scholar
  13. 13.
    Castillo E, Osman NF, Rosen BD, El-Shehaby I, Pan L, Jerosch-Herold M, et al. Quantitative assessment of regional myocardial function with MR-tagging in a multi-center study: interobserver and intraobserver agreement of fast strain analysis with Harmonic Phase (HARP) MRI. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2005;7(5):783–91.Google Scholar
  14. 14.
    Bild DE. Multi-Ethnic study of Atherosclerosis: objectives and design. Am J Epidemiol. 2002;156(9):871–81. doi:10.1093/aje/kwf113.PubMedCrossRefGoogle Scholar
  15. 15.
    Rosen BD, Saad MF, Shea S, Nasir K, Edvardsen T, Burke G, et al. Hypertension and smoking are associated with reduced regional left ventricular function in asymptomatic: individuals the Multi-Ethnic Study of Atherosclerosis. J Am Coll Cardiol. 2006;47(6):1150–8. doi:10.1016/j.jacc.2005.08.078.PubMedCrossRefGoogle Scholar
  16. 16.
    Edvardsen T, Rosen BD, Pan L, Jerosch-Herold M, Lai S, Hundley WG, et al. Regional diastolic dysfunction in individuals with left ventricular hypertrophy measured by tagged magnetic resonance imaging–the Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J. 2006;151(1):109–14. doi:10.1016/j.ahj.2005.02.018.PubMedCrossRefGoogle Scholar
  17. 17.
    Edvardsen T, Detrano R, Rosen BD, Carr JJ, Liu K, Lai S, et al. Coronary artery atherosclerosis is related to reduced regional left ventricular function in individuals without history of clinical cardiovascular disease: the Multiethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26(1):206–11. doi:10.1161/01.ATV.0000194077.23234.ae.PubMedCrossRefGoogle Scholar
  18. 18.
    Fernandes VR, Polak JF, Cheng S, Rosen BD, Carvalho B, Nasir K, et al. Arterial stiffness is associated with regional ventricular systolic and diastolic dysfunction: the Multi-Ethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28(1):194–201. doi:10.1161/ATVBAHA.107.156950.PubMedCrossRefGoogle Scholar
  19. 19.
    Fernandes VR, Polak JF, Edvardsen T, Carvalho B, Gomes A, Bluemke DA, et al. Subclinical atherosclerosis and incipient regional myocardial dysfunction in asymptomatic individuals: the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol. 2006;47(12):2420–8. doi:10.1016/j.jacc.2005.12.075.PubMedCrossRefGoogle Scholar
  20. 20.••
    Choi EY, Rosen BD, Fernandes VR, Yan RT, Yoneyama K, Donekal S, et al. Prognostic value of myocardial circumferential strain for incident heart failure and cardiovascular events in asymptomatic individuals: the Multi-Ethnic Study of Atherosclerosis. Eur Heart J. 2013;34(30):2354–61. Demonstration of the incremental prognostic value of circumferential strain for incident heart failure in asymptomatic patients.PubMedCrossRefGoogle Scholar
  21. 21.
    Kramer CM, Lima JA, Reichek N, Ferrari VA, Llaneras MR, Palmon LC, et al. Regional differences in function within noninfarcted myocardium during left ventricular remodeling. Circulation. 1993;88(3):1279–88.PubMedCrossRefGoogle Scholar
  22. 22.
    Gerber BL, Rochitte CE, Melin JA, McVeigh ER, Bluemke DA, Wu KC, et al. Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation. 2000;101(23):2734–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Cheng S, Fernandes VR, Bluemke DA, McClelland RL, Kronmal RA, Lima JA. Age-related left ventricular remodeling and associated risk for cardiovascular outcomes: the Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Imaging. 2009;2(3):191–8. doi:10.1161/CIRCIMAGING.108.819938.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Takeuchi M, Otsuji Y, Lang RM. Evaluation of left ventricular function using left ventricular twist and torsion parameters. Curr Cardiol Rep. 2009;11(3):225–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Yoneyama K, Gjesdal O, Choi EY, Wu CO, Hundley WG, Gomes AS, et al. Age, sex, and hypertension-related remodeling influences left ventricular torsion assessed by tagged cardiac magnetic resonance in asymptomatic individuals: the multi-ethnic study of atherosclerosis. Circulation. 2012;126(21):2481–90. doi:10.1161/CIRCULATIONAHA.112.093146.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Rosen BD, Fernandes VR, Nasir K, Helle-Valle T, Jerosch-Herold M, Bluemke DA, et al. Age, increased left ventricular mass, and lower regional myocardial perfusion are related to greater extent of myocardial dyssynchrony in asymptomatic individuals: the multi-ethnic study of atherosclerosis. Circulation. 2009;120(10):859–66. doi:10.1161/CIRCULATIONAHA.108.787408.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    de Leeuw N, Ruiter DJ, Balk AH, de Jonge N, Melchers WJ, Galama JM. Histopathologic findings in explanted heart tissue from patients with end-stage idiopathic dilated cardiomyopathy. Transpl Int Off J Eur Soc Organ Transplant. 2001;14(5):299–306.CrossRefGoogle Scholar
  28. 28.
    Marijianowski MM, Teeling P, Mann J, Becker AE. Dilated cardiomyopathy is associated with an increase in the type I/type III collagen ratio: a quantitative assessment. J Am Coll Cardiol. 1995;25(6):1263–72. doi:10.1016/0735-1097(94)00557-7.PubMedCrossRefGoogle Scholar
  29. 29.
    Whittaker P, Boughner DR, Kloner RA. Analysis of healing after myocardial infarction using polarized light microscopy. Am J Pathol. 1989;134(4):879–93.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Diez J, Querejeta R, Lopez B, Gonzalez A, Larman M, Martinez Ubago JL. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002;105(21):2512–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OH. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation. 1995;91(1):161–70.PubMedCrossRefGoogle Scholar
  32. 32.
    Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol. 2008;52(19):1574–80. doi:10.1016/j.jacc.2008.06.049.PubMedCrossRefGoogle Scholar
  33. 33.
    Schwarz F, Mall G, Zebe H, Blickle J, Derks H, Manthey J, et al. Quantitative morphologic findings of the myocardium in idiopathic dilated cardiomyopathy. Am J Cardiol. 1983;51(3):501–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Kwong RY, Chan AK, Brown KA, Chan CW, Reynolds HG, Tsang S, et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation. 2006;113(23):2733–43. doi:10.1161/CIRCULATIONAHA.105.570648.PubMedCrossRefGoogle Scholar
  35. 35.
    Kwong RY, Sattar H, Wu H, Vorobiof G, Gandla V, Steel K, et al. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation. 2008;118(10):1011–20. doi:10.1161/CIRCULATIONAHA.107.727826.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Scott PA, Rosengarten JA, Curzen NP, Morgan JM. Late gadolinium enhancement cardiac magnetic resonance imaging for the prediction of ventricular tachyarrhythmic events: a meta-analysis. Eur J Heart Fail. 2013;15(9):1019–27. doi:10.1093/eurjhf/hft053.PubMedCrossRefGoogle Scholar
  37. 37.
    Rehwald WG, Fieno DS, Chen EL, Kim RJ, Judd RM. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation. 2002;105(2):224–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart. 2013;99(13):932–7. doi:10.1136/heartjnl-2012-303052.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J. 2005;26(15):1461–74. doi:10.1093/eurheartj/ehi258.PubMedCrossRefGoogle Scholar
  40. 40.
    Yan AT, Shayne AJ, Brown KA, Gupta SN, Chan CW, Luu TM, et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation. 2006;114(1):32–9. doi:10.1161/CIRCULATIONAHA.106.613414.PubMedCrossRefGoogle Scholar
  41. 41.
    Gerber BL, Rousseau MF, Ahn SA, le Polain de Waroux JB, Pouleur AC, Phlips T, et al. Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction: impact of revascularization therapy. J Am Coll Cardiol. 2012;59(9):825–35. doi:10.1016/j.jacc.2011.09.073.PubMedCrossRefGoogle Scholar
  42. 42.
    Hendel RC, Patel MR, Kramer CM, Poon M, Carr JC, Gerstad NA, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006;48(7):1475–97. doi:10.1016/j.jacc.2006.07.003.PubMedCrossRefGoogle Scholar
  43. 43.
    Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006;48(10):1977–85. doi:10.1016/j.jacc.2006.07.049.PubMedCrossRefGoogle Scholar
  44. 44.
    Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA : the journal of the American Medical Association. 2013;309(9):896–908. doi:10.1001/jama.2013.1363.CrossRefGoogle Scholar
  45. 45.
    Ghio S, Revera M, Mori F, Klersy C, Raisaro A, Raineri C, et al. Regional abnormalities of myocardial deformation in patients with hypertrophic cardiomyopathy: correlations with delayed enhancement in cardiac magnetic resonance. European journal of heart failure. 2009;11(10):952–7. doi:10.1093/eurjhf/hfp122.PubMedCrossRefGoogle Scholar
  46. 46.
    Adabag AS, Maron BJ, Appelbaum E, Harrigan CJ, Buros JL, Gibson CM, et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol. 2008;51(14):1369–74. doi:10.1016/j.jacc.2007.11.071.PubMedCrossRefGoogle Scholar
  47. 47.
    Green JJ, Berger JS, Kramer CM, Salerno M. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovascular imaging. 2012;5(4):370–7. doi:10.1016/j.jcmg.2011.11.021.PubMedCrossRefGoogle Scholar
  48. 48.
    Austin BA, Tang WH, Rodriguez ER, Tan C, Flamm SD, Taylor DO, et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovascular imaging. 2009;2(12):1369–77. doi:10.1016/j.jcmg.2009.08.008.PubMedCrossRefGoogle Scholar
  49. 49.
    Migrino RQ, Christenson R, Szabo A, Bright M, Truran S, Hari P. Prognostic implication of late gadolinium enhancement on cardiac MRI in light chain (AL) amyloidosis on long term follow up. BMC medical physics. 2009;9:5. doi:10.1186/1756-6649-9-5.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Krittayaphong R, Boonyasirinant T, Chaithiraphan V, Maneesai A, Saiviroonporn P, Nakyen S, et al. Prognostic value of late gadolinium enhancement in hypertensive patients with known or suspected coronary artery disease. The international journal of cardiovascular imaging. 2010;26 Suppl 1:123–31. doi:10.1007/s10554-009-9574-7.PubMedCrossRefGoogle Scholar
  51. 51.••
    Yoon YE, Kitagawa K, Kato S, Nakajima H, Kurita T, Dohi K, et al. Prognostic value of unrecognised myocardial infarction detected by late gadolinium-enhanced MRI in diabetic patients with normal global and regional left ventricular systolic function. European radiology. 2013;23(8):2101–8. doi:10.1007/s00330-013-2817-y. Demonstration of the prognostic value of myocardial scar detected by late gadolinium enhancement for incidence of cardiovascular events in diabetic patients without history of coronary heart disease.PubMedCrossRefGoogle Scholar
  52. 52.
    White SK, Sado DM, Flett AS, Moon JC. Characterising the myocardial interstitial space: the clinical relevance of non-invasive imaging. Heart. 2012;98(10):773–9. doi:10.1136/heartjnl-2011-301515.PubMedCrossRefGoogle Scholar
  53. 53.
    Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122(2):138–44. doi:10.1161/CIRCULATIONAHA.109.930636.PubMedCrossRefGoogle Scholar
  54. 54.
    Sibley CT, Noureldin RA, Gai N, Nacif MS, Liu S, Turkbey EB, et al. T1 Mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy. Radiology. 2012;265(3):724–32. doi:10.1148/radiol.12112721.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Messroghli DR, Plein S, Higgins DM, Walters K, Jones TR, Ridgway JP, et al. Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution–reproducibility study. Radiology. 2006;238(3):1004–12. doi:10.1148/radiol.2382041903.PubMedCrossRefGoogle Scholar
  56. 56.
    Messroghli DR, Niendorf T, Schulz-Menger J, Dietz R, Friedrich MG. T1 mapping in patients with acute myocardial infarction. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2003;5(2):353–9.CrossRefGoogle Scholar
  57. 57.
    Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 2004;52(1):141–6. doi:10.1002/mrm.20110.CrossRefGoogle Scholar
  58. 58.
    Messroghli DR, Walters K, Plein S, Sparrow P, Friedrich MG, Ridgway JP, et al. Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 2007;58(1):34–40. doi:10.1002/mrm.21272.CrossRefGoogle Scholar
  59. 59.
    Kellman P, Wilson JR, Xue H, Ugander M, Arai AE. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2012;14:63. doi:10.1186/1532-429X-14-63.CrossRefGoogle Scholar
  60. 60.
    Liu S, Han J, Nacif MS, Jones J, Kawel N, Kellman P, et al. Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: sample size considerations for clinical trials. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2012;14:90. doi:10.1186/1532-429X-14-90.CrossRefGoogle Scholar
  61. 61.
    Ugander M, Oki AJ, Hsu LY, Kellman P, Greiser A, Aletras AH, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. European heart journal. 2012;33(10):1268–78. doi:10.1093/eurheartj/ehr481.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.••
    Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, Aneizi AA, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation. 2012;126(10):1206–16. doi:10.1161/CIRCULATIONAHA.111.089409. Demonstration of the prognostic value of extracellular volume for incidence of cardiovascular events in unselected patients.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Wong TC. Piehler KM. Kadakkal A, Kellman P, Schwartzman DS et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. European heart journal: Kang IA; 2013. doi:10.1093/eurheartj/eht193.Google Scholar
  64. 64.
    Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57(8):891–903. doi:10.1016/j.jacc.2010.11.013.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yoshiaki Ohyama
    • 1
  • Gustavo J. Volpe
    • 1
  • Joao A. C. Lima
    • 1
  1. 1.Division of cardiologyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations