Advertisement

Assessing Myocardial Disease Using T MRI

  • Yuchi Han
  • Timo Liimatainen
  • Robert C. Gorman
  • Walter R. T. Witschey
Molecular Imaging (G Strijkers, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Molecular Imaging

Abstract

There is great interest to use magnetic resonance imaging (MRI) for non-invasive assessment of myocardial disease in ischemic and non-ischemic cardiomyopathies. Recently, there has been a renewed interest to use a magnetic resonance imaging (MRI) technique utilizing spin locking radiofrequency (RF) pulses, called T MRI. The spin locking RF pulse creates sensitivity to some mechanisms of nuclear relaxation such as 1H exchange between water and amide, amine and hydroxyl functional groups in molecules; consequently, there is the potential to non-invasively, and without exogenous contrast agents, obtain important molecular information from diseased myocardial tissue. The purpose of this article is to review and critically examine the recent published literature in the field related to T MRI of myocardial disease.

Keywords

Ischemic Non-ischemic Heart disease Magnetic resonance imaging T relaxation Spin lock radiofrequency pulse 

Notes

Acknowledgements

The authors thank Dr. Ravinder Reddy for reviewing this work and providing valuable insight and expertise.

Conflict of Interest

Yuchi Han, Timo Liimatainen, Robert C Gorman, Walter RT Witschey declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland J, Reddy R. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed. 2006;19(7):781–821.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Witschey W, Borthakur A, Fenty M, Kneeland B, Lonner J, McArdle E, et al. T1rho MRI quantification of arthroscopically confirmed cartilage degeneration. Magn Reson Med. 2010;63(5):1376–82.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Grohn O, Kettunen M, Makela H, Penttonen M, Pitkanen A, Lukkarinen J, et al. Early detection of irreversible cerebral ischemia in the rat using dispersion of the magnetic resonance imaging relaxation time, T1rho. J Cereb Blood Flow Metab. 2000;20(10):1457–66.PubMedCrossRefGoogle Scholar
  4. 4.
    Duvvuri U, Poptani H, Feldman M, Nadal-Desbarats L, Gee M, Lee W, et al. Quantitative T1rho magnetic resonance imaging of RIF-1 tumors in vivo: detection of early response to cyclophosphamide therapy. Cancer Res. 2001;61(21):7747–53.PubMedGoogle Scholar
  5. 5.
    Wang Y, Yuan J, Chu E, Go M, Huang H, Ahuja A, et al. T1rho MR imaging is sensitive to evaluate liver fibrosis: an experimental study in a rat biliary duct ligation model. Radiology. 2011;259(3):712–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Redfield A. Nuclear spin thermodynamics in the rotating frame. Science. 1969;164(3883):1015–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Palmer A, Massi F. Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem Rev. 2006;106(5):1700–19.PubMedCrossRefGoogle Scholar
  8. 8.••
    Witschey W, Pilla J, Ferrari G, Koomalsingh K, Haris M, Hinmon R, et al. Rotating frame spin lattice relaxation in a swine model of chronic, left ventricular myocardial infarction. Magn Reson Med. 2010;64(5):1453–60. This study reports T nuclear relaxation dispersion in excised myocardium and tissue 6–8 weeks post-infarction. PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    van Zijl P, Yadav N. Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med. 2011;65(4):927–48.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Jin T, Autio J, Obata T, Kim S. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons. Magn Reson Med. 2011;65(5):1448–60.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.•
    Haris M, Nanga R, Singh A, Cai K, Kogan F, Hariharan H, et al. Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI. NMR Biomed. 2012;25(11):1305–9. This study demonstrates a chemical exchange saturation transfer (CEST) MRI method for imaging creatine non-invasively in the heart. PubMedCrossRefGoogle Scholar
  12. 12.
    Walker-Samuel S, Ramasawmy R, Torrealdea F, Rega M, Rajkumar V, Johnson S, et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat Med. 2013;19(8):1067–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Muthupillai R, Flamm S, Wilson J, Pettigrew R, Dixon W. Acute myocardial infarction: tissue characterization with T1rho-weighted MR imaging–initial experience. Radiology. 2004;232(2):606–10.PubMedCrossRefGoogle Scholar
  14. 14.•
    Witschey W, Zsido G, Koomalsingh K, Kondo N, Minakawa M, Shuto T, et al. In vivo chronic myocardial infarction characterization by spin locked cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:37. T MRI signal enhancement was shown in vivo in a large animal model of chronic myocardial infarction and correlated with late gadolinium-enhanced MRI. PubMedCrossRefGoogle Scholar
  15. 15.••
    Musthafa H, Dragneva G, Lottonen L, Merentie M, Petrov L, Heikura T, et al. Longitudinal rotating frame relaxation time measurements in infarcted mouse myocardium in vivo. Magn Reson Med. 2013;69(5):1389–95. This was a comprehensive serial study of T relaxation in mice post-MI. PubMedCrossRefGoogle Scholar
  16. 16.
    Huber S, Muthupillai R, Lambert B, Pereyra M, Napoli A, Flamm S. Tissue characterization of myocardial infarction using T1rho: influence of contrast dose and time of imaging after contrast administration. J Magn Reson Imaging. 2006;24(5):1040–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Witschey W, Borthakur A, Elliott M, Fenty M, Sochor M, Wang C, et al. T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI. J Magn Reson Imaging. 2008;28(3):744–54.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Dixon W, Oshinski J, Trudeau J, Arnold B, Pettigrew R. Myocardial suppression in vivo by spin locking with composite pulses. Magn Reson Med. 1996;36(1):90–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Witschey W, Borthakur A, Elliott M, Mellon E, Niyogi S, Wallman D, et al. Artifacts in T1 rho-weighted imaging: compensation for B(1) and B(0) field imperfections. J Magn Reson. 2007;186(1):75–85.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Liimatainen T, Sorce D, O’Connell R, Garwood M, Michaeli S. MRI contrast from relaxation along a fictitious field (RAFF). Magn Reson Med. 2010;64(4):983–94. PMID: 20740665.PubMedCrossRefGoogle Scholar
  21. 21.
    Wheaton A, Borthakur A, Reddy R. Application of the keyhole technique to T1rho relaxation mapping. J Magn Reson Imaging. 2003;18(6):745–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Richardson OC, Scott MLI, Tanner SF, Waterton JC, Buckley DL. Overcoming the low relaxivity of gadofosveset at high field with spin locking. Magn Reson Med. 2012;68(4):1234–8.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Moonen, RPM, van der Tol P, Hectors SJCG, Nicolay K, Strijkers GJ. Enhanced contrast of superparamagnetic iron oxide contrast agents by spin-lock MR. Proc Inter Soc Magn Reson Med. 2013. Salt Lake City, UT, USAGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yuchi Han
    • 3
  • Timo Liimatainen
    • 2
  • Robert C. Gorman
    • 1
  • Walter R. T. Witschey
    • 1
  1. 1.Department of Radiology, Perelman School of MedicineUniversity of Pennsylvania, Smilow Center for Translational ResearchPhiladelphiaUSA
  2. 2.Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
  3. 3.Cardiovascular Division, Department of MedicinePerelman School of Medicine, Hospital of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations