Advertisement

Current Cardiovascular Imaging Reports

, Volume 6, Issue 5, pp 390–398 | Cite as

Fundamentals and Potential of Magnetic Particle Imaging

  • Robert L. DuschkaEmail author
  • Julian Haegele
  • Nikolaos Panagiotopoulos
  • Hanne Wojtczyk
  • Joerg Barkhausen
  • Florian M. Vogt
  • Thorsten M. Buzug
  • Kerstin Lüdtke-Buzug
Hot Topic

Abstract

Cardiovascular interventions are standard treatment for numerous cardiovascular conditions and require high fidelity imaging tools to accurately visualize both vessels and interventional devices. Currently, digital subtraction angiography (DSA) is the standard method for peripheral arterial angiography. Magnetic particle imaging (MPI) is a new imaging modality, free of ionizing radiation, that utilizes static and oscillating magnetic fields to provide high temporal resolution, sub-millimeter spatial resolution images and high sensitivity. Superparamagnetic iron oxide nanoparticles (SPIOs) are used as tracers in MPI and signals are based on non-linear magnetization characteristics of those SPIOs. Regarding the magnetic moment of used tracers in MPI imaging is much faster in MPI, compared to imaging in CT and MRI. This makes MPI also very attractive for cardiovascular imaging and cardiovascular interventions. First in vivo visualization of a beating mouse heart demonstrated the feasibility of the visualization of the cardiovascular system by MPI. Different scanner designs and acquisition methods have already emerged addressing the requirements of cardiovascular interventions. Early studies have demonstrated MPI as an interesting and promising cardiovascular imaging modality. Technical improvement in hardware MPI imaging systems are currently being addressed in ongoing research which will facilitate former image acquisition with higher resolution in larger animals and/or human.

Keywords

Magnetic particle imaging (MPI) Principle Cardiovascular interventions Tracer 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of the German Federal Ministry of Education and Research (BMBF) under grant number 13N11090 and of the European Union and the State Schleswig-Holstein (Programme for the Future – Economy) under grant number 122-10-004. Moreover, the authors express their gratitude towards Philips Technologie GmbH Forschungslaboratorien, Hamburg, Germany for the photo of the experimental MPI setup and also towards Ksenija Gräfe and Timo F. Sattel, Institute of Medical Engineering, University of Luebeck, Germany for the photo of the single-sided MPI scanner. The construction of the single-sided MPI scanner at the Institute of Medical Engineering, University of Luebeck is financially supported by the German Federal Ministry of Education and Research (BMBF) under grant number 01EZ0912. Last but not least the authors express their gratitude towards Jürgen Weizenecker et al. and the Institute of Physics and Engineering in Medicine for granting permission for the use of Fig. 4 from “Three-dimensional in vivo real-time Magnetic Particle Imaging”, Phys Med Biol 2009 Mar 7;54(5):L1–L10 (Fig. 2, L4). doi:  10.1088/0031-9155/54/5/L01. Epub 2009 Feb 10.

Compliance with Ethics Guidelines

Conflict of Interest

Robert L. Duschka, MD reported receiving grants from German Federal Ministry of Education and Research (#13N11090) and from the European Union and the State Schleswig-Holstein (Programme for the Future-Economy) (#122-10-004).

Dr. med. Julian Haegele, MD reported no potential conflicts of interest relevant to this article.

Nikolaos Panagiotopoulos reported no potential conflicts of interest relevant to this article.

Dipl.-Phys. (Med.) Hanne Wojtczyk reported receiving grants from German Federal Ministry of Education and Research (#13N11090) and from the European Union and the State Schleswig-Holstein (Programme for the Future-Economy) (#122-10-004).

Prof. Dr. med. Joerg Barkhausen, MD reported no potential conflicts of interest relevant to this article.

PD. Dr. med. Florian M. Vogt, MD reported no potential conflicts of interest relevant to this article.

Prof. Dr. rer. nat. Thorsten M. Buzug reported receiving grants from German Federal Ministry of Education and Research (#13N11090 and #01EZ0912) and from the European Union and the State Schleswig-Holstein (Programme for the Future-Economy) (#122-10-004).

Dr. rer. nat. Kerstin Lüdtke-Buzug reported no potential conflicts of interest relevant to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214–7.PubMedCrossRefGoogle Scholar
  2. 2.
    • Buzug TM, Bringout G, Erbe M, Gräfe K, Graeser M, Grüttner M, et al. Magnetic particle imaging: introduction to imaging and hardware realization. Z Med Phys. 2012;22(4):323–34. Good review of imaging and hardware realization in MPI.PubMedCrossRefGoogle Scholar
  3. 3.
    Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV, et al. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater. 2012;24(28):3870–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol. 2009;54(5):L1–10. doi: 10.1088/0031-9155/54/5/L01. Epub 2009 Feb 10.PubMedCrossRefGoogle Scholar
  5. 5.
    Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23(6):815–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–245.PubMedCrossRefGoogle Scholar
  7. 7.
    Howell JD. Coronary heart disease and heart attacks, 1912–2010. Med Hist. 2011;55(3):307–12.PubMedCrossRefGoogle Scholar
  8. 8.
    Heinrich MC, Haberle L, Muller V, Bautz W, Uder M. Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials. Radiology. 2009;250(1):68–86.PubMedCrossRefGoogle Scholar
  9. 9.
    Rahmer J, Weizenecker J, Gleich B, Borgert J. Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging. 2009;9:4.PubMedCrossRefGoogle Scholar
  10. 10.
    Lampe J, Bassoy C, Rahmer J, Weizenecker J, Voss H, Gleich B, et al. Fast reconstruction in magnetic particle imaging. Phys Med Biol. 2012;57(4):1113–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Knopp T, Biederer S, Sattel TF, Rahmer J, Weizenecker J, Gleich B, et al. 2D model-based reconstruction for magnetic particle imaging. Med Phys. 2010;37(2):485–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Knopp T, Sattel TF, Biederer S, Rahmer J, Weizenecker J, Gleich B, et al. Model-based reconstruction for magnetic particle imaging. IEEE Trans Med Imaging. 2010;29(1):12–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Goodwill PW, Conolly SM. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging. 2010;29(11):1851–9.PubMedCrossRefGoogle Scholar
  14. 14.
    •• Goodwill PW, Conolly SM. Multidimensional X-space magnetic particle imaging. IEEE Trans Med Imaging. 2011;30(9):1581–90. Good paper, introducing multidimensional x-space MPI.PubMedCrossRefGoogle Scholar
  15. 15.
    Rahmer J, Gleich B, Bontus C, Schmale I, Schmidt J, Kanzenbach J, et al. Rapid 3D in vivo magnetic particle imaging with a large field of view. In: International Society for Magnetic Resonance in Medicine, 19th Annual Meeting: 2011; Montreal; 2011: 3285.Google Scholar
  16. 16.
    Schmale I, Rahmer J, Gleich B, Kanzenbach J, Schmidt JD, Bontus C, et al. First phantom and in vivo MPI images with an extended field of view. In: Proc. SPIE 7965, medical imaging 2011: biomedical applications in molecular, structural and functional imaging; 2011.Google Scholar
  17. 17.
    Sattel T, Knopp T, Biederer S, Gleich B, Weizenecker J, Borgert J, et al. Single-sided device for magnetic particle imaging. J Phys D Appl Phys. 2009;42(2):1–5.CrossRefGoogle Scholar
  18. 18.
    Weizenecker J, Gleich B, Borgert J. Magnetic particle imaging using a field free line. J Phys D Appl Phys. 2008;41(10).Google Scholar
  19. 19.
    • Erbe M, Knopp T, Sattel TF, Biederer S, Buzug TM. Experimental generation of an arbitrarily rotated field-free line for the use in magnetic particle imaging. Med Phys. 2011;38(9):5200–7. Good paper, introducing scanner setup for field-free line concept in MPI.PubMedCrossRefGoogle Scholar
  20. 20.
    Knopp T, Erbe M, Biederer S, Sattel TF, Buzug TM. Efficient generation of a magnetic field-free line. Med Phys. 2010;37(7):3538–40.PubMedCrossRefGoogle Scholar
  21. 21.
    Knopp T, Erbe M, Sattel TF, Biederer S, Buzug TM. Generation of a static magnetic field-free line using two Maxwell coil pairs. Appl Phys Lett. 2010;97(9).Google Scholar
  22. 22.
    Knopp T, Sattel TF, Biederer S, Buzug TM. Field-free line formation in a magnetic field. J Phys A Math Theor. 2010;43(1):1–5.CrossRefGoogle Scholar
  23. 23.
    Erbe M, Weber M, Sattel TF, Buzug TM. Experimental validation of an assembly of optimized curved rectangular coils for the use in dynamic field free line magnetic particle imaging. Curr Med Imaging Rev. 2013;9(2):89–95.CrossRefGoogle Scholar
  24. 24.
    Goodwill PW, Lu K, Zheng B, Conolly SM. An x-space magnetic particle imaging scanner. Rev Sci Instrum. 2012;83(3).Google Scholar
  25. 25.
    Goodwill PW, Konkle JJ, Zheng B, Saritas EU, Conolly SM. Projection X-space magnetic particle imaging. IEEE Trans Med Imaging. 2012;31(5):1076–85.PubMedCrossRefGoogle Scholar
  26. 26.
    •• Konkle JJ, Goodwill PW, Carrasco-Zevallos OM, Conolly SM. Projection reconstruction magnetic particle imaging. IEEE Trans Med Imaging. 2013;32(2):338–47. Good paper of proof of principle for the use of filtered backprojection in Magnetic particle imaging.PubMedCrossRefGoogle Scholar
  27. 27.
    Knopp T, Erbe M, Sattel TF, Biederer S, Buzug TM. A Fourier slice theorem for magnetic particle imaging using a field-free line. Inverse Prob. 2011;27(9):095004.CrossRefGoogle Scholar
  28. 28.
    Pankhurst QA, Conolly J, Jones SK, Dobson J. Application of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167–81.CrossRefGoogle Scholar
  29. 29.
    Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010;85(5):315–9.PubMedGoogle Scholar
  30. 30.
    Hematology/Oncology (cancer) Approvals & Safety Notifications: Previous News Items, Website of the FDA (U.S. Food and Drug Administration), http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm279177.htm.
  31. 31.
    Eberbeck D, Wiekhorst F, Wagner S, Trahms L. How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Appl Phys Lett. 2011;98(18).Google Scholar
  32. 32.
    Ferguson RM, Minard KR, Khandhar AP, Krishnan KM. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys. 2011;38(3):1619–26.PubMedCrossRefGoogle Scholar
  33. 33.
    Ludwig F, Wawrzik T, Yoshida T, Gehrke N, Briel A, Eberbeck D, et al. Optimization of magnetic nanoparticles for magnetic particle imaging. IEEE Trans Magn. 2012;48(11):3780–3.CrossRefGoogle Scholar
  34. 34.
    Ferguson RM, Khandhar AP, Krishnan KM. Tracer design for magnetic particle imaging (invited). J Appl Phys. 2012;111(7).Google Scholar
  35. 35.
    Biederer S, Knopp T, Sattel TF, Ludtke-Buzug K, Gleich B, Weizenecker J, et al. Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging. J Phys D Appl Phys. 2009;42(20).Google Scholar
  36. 36.
    Lüdtke-Buzug K. From synthesis to clinical application. Magnetic nanoparticles. Chem Unserer Zeit. 2012;46(1):32–9.CrossRefGoogle Scholar
  37. 37.
    Schmale I, Rahmer J, Gleich B, Mende O, Weizenecker J, Schmidt J, et al. MPI-based blood flow examination along stenosis. BMT. 2011.Google Scholar
  38. 38.
    •• Schütz G. The potential of magnetic particle imaging in the competitive environment of cardiac diagnostics. In: Buzug T, Borgert J, editors. Magnetic particle imaging. SPPHY 140: Berlin: Springer-Verlag; 2012. pp. 129–134. Good chapter, concerning the potential of MPI for cardiovascular diagnostics. Google Scholar
  39. 39.
    Lacroix R, Rahmer J, Borgert J, Bonnefous O, Makram-Ebeid S. Early results on image and signal processing for characterization of blood flow in 4D MPI images. In: International Workshop on Magnetic Particle Imaging; 2013. doi: 10.1109/IWMPI.2013.6528356.
  40. 40.
    Sigovan M, Bessaad A, Alsaid H, Lancelot E, Corot C, Neyran B, et al. Assessment of age modulated vascular inflammation in ApoE-/- mice by USPIO-enhanced magnetic resonance imaging. Investig Radiol. 2010;45(11):702–7.CrossRefGoogle Scholar
  41. 41.
    Metz S, Beer AJ, Settles M, Pelisek J, Botnar RM, Rummeny EJ, et al. Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. Int J Cardiovasc Imaging. 2011;27(6):901–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Markov DE, Boeve H, Gleich B, Borgert J, Antonelli A, Sfara C, et al. Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol. 2010;55(21):6461–73.PubMedCrossRefGoogle Scholar
  43. 43.
    Bock M, Wacker FK. MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging. 2008;27(2):326–38.PubMedCrossRefGoogle Scholar
  44. 44.
    Kagadis GC, Katsanos K, Karnabatidis D, Loudos G, Nikiforidis GC, Hendee WR. Emerging technologies for image guidance and device navigation in interventional radiology. Med Phys. 2012;39(9):5768–81.PubMedCrossRefGoogle Scholar
  45. 45.
    Wendt M, Wacker FK. Visualization, tracking, and navigation of instruments for magnetic resonance imaging-guided endovascular procedures. Top Magn Reson Imaging. 2000;11(3):163–72.PubMedCrossRefGoogle Scholar
  46. 46.
    Smits HF, Bos C, van der Weide R, Bakker CJ. Interventional MR: vascular applications. Eur Radiol. 1999;9(8):1488–95.PubMedCrossRefGoogle Scholar
  47. 47.
    van der Weide R, Zuiderveld KJ, Bakker CJ, Hoogenboom T, van Vaals JJ, Viergever MA. Image guidance of endovascular interventions on a clinical MR scanner. IEEE Trans Med Imaging. 1998;17(5):779–85.PubMedCrossRefGoogle Scholar
  48. 48.
    Saeed M, Hetts SW, English J, Wilson M. MR fluoroscopy in vascular and cardiac interventions (review). Int J Cardiovasc Imaging. 2012;28(1):117–37.PubMedCrossRefGoogle Scholar
  49. 49.
    Settecase F, Hetts SW, Martin AJ, Roberts TP, Bernhardt AF, Evans L, et al. RF heating of MRI-assisted catheter steering coils for interventional MRI. Acad Radiol. 2011;18(3):277–85.PubMedCrossRefGoogle Scholar
  50. 50.
    Tong N, Shmatukha A, Asmah P, Stainsby J. Practical aspects of MR imaging in the presence of conductive guide wires. Phys Med Biol. 2010;55(1):N13–22.PubMedCrossRefGoogle Scholar
  51. 51.
    Martin AJ, Baek B, Acevedo-Bolton G, Higashida RT, Comstock J, Saloner DA. MR imaging during endovascular procedures: an evaluation of the potential for catheter heating. Magn Reson Med. 2009;61(1):45–53.PubMedCrossRefGoogle Scholar
  52. 52.
    • Haegele J, Rahmer J, Gleich B, Borgert J, Wojtczyk H, Panagiotopoulos N, et al. Magnetic particle imaging: visualization of instruments for cardiovascular intervention. Radiology. 2012;265(3):933–8. Good paper addressing the visualization of interventional instruments in MPI.PubMedCrossRefGoogle Scholar
  53. 53.
    Haegele J, Biederer S, Wojtczyk H, Graeser M, Knopp T, Buzug TM, et al. Toward cardiovascular interventions guided by magnetic particle imaging: first instrument characterization. Magn Reson Med. Epub: 2012/07/26.Google Scholar
  54. 54.
    Duschka RL, Wojtczyk H, Panagiotopoulos N, Haegele J, Bringout G, Rahmer J, et al. Heating of interventional instruments in magnetic particle imaging—first experiences of safety measurements. In: International Workshop on Magnetic Particle Imaging; 2013. doi: 10.1109/IWMPI.2013.6528370.
  55. 55.
    Johnson L, Pinder SE, Douek M. Deposition of superparamagnetic iron-oxide nanoparticles in axillary sentinel lymph nodes following subcutaneous injection. Histopathology. 2013;62(3):481–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Finas D, Baumann K, Heinrich K, Ruhland B, Sydow L, Gräfe K, et al. Distribution of Superparamagnetic nanoparticles in lymphatic tissue for sentinel lymph node detection in breast cancer by magnetic particle imaging. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. vol SPPHY 140: Berlin: Springer; 2012. p. 187–191.Google Scholar
  57. 57.
    Sattel TF, Erbe M, Biederer S, Knopp T, Finas D, Diedrich K, et al. Single-sided magnetic particle imaging device for the sentinel lymph node biopsy scenario. In: Proc. SPIE 8317, medical imaging: biomedical applications in molecular, structural and functional imaging; 2012.Google Scholar
  58. 58.
    Gräfe K, Sattel TF, Luedtke-Buzug K, Finas D, Borgert J, Buzug TM. Magnetic particle imaging for sentinel lymph node biopsy in breast cancer. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. vol SPPHY 140: Berlin: Springer; 2012. p. 237–241.Google Scholar
  59. 59.
    Zheng B, Vazin T, Yang W, Goodwill PW, Saritas E, Croft L, et al. Quantitative stem cell imaging with magnetic particle imaging. In: International workshop on magnetic particle imaging; 2013. doi: 10.1109/IWMPI.2013.6528323.
  60. 60.
    • Saritas E, Goodwill P, Zhang G, Wenxiao Y, Conolly S. Safety limits for human-size magnetic particle imaging systems. In: Buzug TM, Borgert J, editors. Magnetic particle imaging. vol. SPPHY 140: Berlin: Springer-Verlag; 2012. pp. 325–330. Good paper of safety limits for humans in MPI. Google Scholar
  61. 61.
    • Weinberg IN, Stepanov PY, Fricke ST, Probst R, Urdaneta M, Warnow D, et al. Increasing the oscillation frequency of strong magnetic fields above 101 kHz significantly raises peripheral nerve excitation thresholds. Med Phys. 2012;39(5):2578–83. Good paper of thresholds for peripheral nerve stimulation in MPI.PubMedCrossRefGoogle Scholar
  62. 62.
    Gleich B, Weizenecker J, Timminger H, Bontus C, Schmale I, Rahmer J, et al. Fast MPI demonstrator with enlarged field of view. In: International Society for Magnetic Resonance in Medicine, 18th Annual Meeting. vol. 18th Annual Meeting. Stockholm; 2010: 218.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Robert L. Duschka
    • 1
    Email author
  • Julian Haegele
    • 1
  • Nikolaos Panagiotopoulos
    • 1
  • Hanne Wojtczyk
    • 2
  • Joerg Barkhausen
    • 1
  • Florian M. Vogt
    • 1
  • Thorsten M. Buzug
    • 2
  • Kerstin Lüdtke-Buzug
    • 2
  1. 1.Department of Radiology and Nuclear MedicineUniversity Hospital of Schleswig-HolsteinLuebeckGermany
  2. 2.Institute of Medical EngineeringUniversity of LuebeckLuebeckGermany

Personalised recommendations