Current Cardiovascular Imaging Reports

, Volume 6, Issue 4, pp 358–368 | Cite as

Advances in Molecular Imaging: Plaque Imaging

  • Jason M. Tarkin
  • Francis R. Joshi
  • James H. F. Rudd
Cardiac Nuclear Imaging (A Cuocolo, Section Editor)
  • 127 Downloads

Abstract

Recent advances in nuclear plaque imaging aim to achieve noninvasive identification of vulnerable atherosclerotic plaques using positron emission tomography (PET) with 18F-fluorodexoyglucose (FDG) and novel tracers targeting molecular markers of inflammation and other active metabolic processes. Nuclear imaging of atherosclerosis has been demonstrated in multiple vascular beds, including the carotid, aorta, peripheral and coronary arteries—but significant challenges remain, especially for coronary imaging. The advantage of PET over other molecular imaging modalities is its superior sensitivity, however, low spatial resolution means that images must be co-registered with computed tomography (CT) or magnetic resonance imaging (MRI) for precise anatomical localization of the PET signal. Such hybrid techniques provide the best hope for early detection of prospective culprit lesions—which may, in the coronary vasculature, appear falsely low-risk using conventional coronary angiography or stress imaging. Current hot topics in nuclear plaque imaging include the use of FDG-PET for therapeutic monitoring in drug development, identification of imaging biomarkers to evaluate cardiovascular risk, and the development of novel tracers against an array of biologically important markers of atherosclerosis. The purpose of this article is to review these recent advances in nuclear plaque imaging.

Keywords

Atherosclerosis Plaque rupture Molecular imaging Nuclear imaging Positron emission tomography 

Notes

Acknowledgments

This work was supported by the NIHR Cambridge Biomedical Research Centre. Dr Joshi is supported by a British Heart Foundation Clinical Research Training Fellowship and a Raymond and Beverley Sackler PhD Studentship. Dr. Rudd is supported by the British Heart Foundation and HEFCE.

Conflict of Interest

Jason M. Tarkin declares that he has no conflict of interest.

Francis R. Joshi declares that he has no conflict of interest.

James H.F. Rudd declares that he has no conflict of interest.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Davies MJ, Thomas A. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl J Med. 1984;310:1137–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Davies MJ, Thomas AC. Plaque fissuring–the cause of acute myocardial infarction, sudden ischemic death, and crescendo angina. Br Heart J. 1985;53:363–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92:657–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol. 2006;47:C7–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Redgrave JN, Lovett JK, Gallagher PJ, Rothwell PM. Histological assessment of symptomatic carotid plaques in relation to the nature and timing of ischemic symptoms: the Oxford plaque study. Circulation. 2006;113:2320–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Faries PL, Chaer RA, Patel S, Lin SC, DeRubertis B, Kent KC. Current management of extracranial carotid artery disease. Vasc Endovascular Surg. 2006;40:165–75.PubMedCrossRefGoogle Scholar
  7. 7.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart Disease and Stroke Statistics - 2012. Update: a report from the American Heart Association. Circulation. 2012;125:e2–220.PubMedCrossRefGoogle Scholar
  8. 8.
    Nichols M, Townsend N, Scarborough P, Luengo-Fernandez R, Leal J, Gray A, et al. European Cardiovascular Disease Statistics 2012. European Heart Network, European Society of Cardiology.Google Scholar
  9. 9.
    Davies MJ. Anatomic features in victims of sudden coronary death. Coronary artery pathology. Circulation. 1992;85(1 Suppl):I19–24.PubMedGoogle Scholar
  10. 10.
    Joshi FR, Lindsay AC, Obaid DR, Falk E, Rudd JH. Noninvasive imaging of atherosclerosis. Eur Heart J Cardiovasc Imaging. 2012;13:205–18.PubMedCrossRefGoogle Scholar
  11. 11.
    Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F, et al. Guidelines on the management of stable angina pectoris: executive summary: the task force on the management of stable angina pectoris of the European Society of Cardiology. Eur Heart J. 2006;27:1341–81.PubMedCrossRefGoogle Scholar
  12. 12.
    Hackett D, Davies G, Maseri A. Pre-existing coronary stenoses in patients with first myocardial infarction are not necessarily severe. Eur Heart J. 1988;9:1317–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 1988;12:56–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. JACC. 2006;47:C13–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.PubMedCrossRefGoogle Scholar
  16. 16.
    Libby P. Molecular bases of the acute coronary syndromes. Circulation. 1995;91:2844–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Kolodgie FD, Burke AP, Farb A, Gold HK, Yuan J, Narula J, et al. The thin-cap fibroatheroma: a type of vulnerable plaque, the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol. 2001;16:285–29.PubMedCrossRefGoogle Scholar
  18. 18.
    Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R. Update on acute coronary syndromes: the pathologists’ view. Eur Heart J. 2013; [Epubahead of print].Google Scholar
  19. 19.
    Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Fishbein MC, Siegel RJ. How big are coronary atherosclerotic plaques that rupture? Circulation. 1996;994:2662–6.CrossRefGoogle Scholar
  21. 21.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Stiel GM, Stiel LSG, Schofer J, Donath K, Mathey DG. Impact of compensatory enlargement of atherosclerotic coronary arteries on angiographic assessment of coronary artery disease. Circulation. 1989;80:1603–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Vancraeynest D, Pasquet A, Roelants V, Gerber BL, Vanoverschelde JL. Imaging the vulnerable plaque. J Am Coll Cardiol. 2011;57:1961–79.PubMedCrossRefGoogle Scholar
  24. 24.
    Camici PG, Rimoldi OE, Gaemperli O, Libby P. Noninvasive anatomic and functional imaging of vascular inflammation and unstable plaque. Eur Heart J. 2012;33:1309–17.PubMedCrossRefGoogle Scholar
  25. 25.
    Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/ SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2012;126:e354–471.PubMedCrossRefGoogle Scholar
  26. 26.
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte Jr M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49:1860–70.PubMedCrossRefGoogle Scholar
  28. 28.
    Rosen BD, Fernandes V, McClelland RL, Carr JJ, Detrano R, Bluemke DA, et al. Relationship between baseline coronary calcium score and demonstration of coronary artery stenoses during follow-up MESA (Multi-Ethnic Study of Athero-sclerosis). Cardiovasc Imaging. 2009;2:1175–83.Google Scholar
  29. 29.
    Pundziute G, Schuijf JD, Jukema JW, Boersma E, de Roos A, van der Wall EE, et al. Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol. 2007;49:62–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Leschka S, Seitun S, Dettmer M, Baumüller S, Stolzmann P, Goetti R, et al. Ex vivo evaluation of coronary atherosclerotic plaques: characterization with dual source CT in comparison with histopathology. J Cardiovasc Comput Tomogr. 2010;4:301–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Voros S, Rinehart S, Qian Z, Joshi P, Vazquez G, Fischer C, et al. Coronary atherosclerosis imaging by coronary CT angiography current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging. 2011;4:537–48.PubMedCrossRefGoogle Scholar
  32. 32.
    Moore MP, Spencer T, Salter DM, Kearney PP, Shaw TR, Starkey IR, et al. Characterization of coronary atherosclerotic morphology by spectral analysis of radiofrequency signal: in vitro intravascular ultrasound study with histological and radiological validation. Heart. 1998;79:459–67.PubMedGoogle Scholar
  33. 33.
    Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation. 2002;106:2200–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Mehta SK, McCrary JR, Frutkin AD, Dolla WJ, Marso SP. Intravascular ultrasound radiofrequency analysis of coronary atherosclerosis: an emerging technology for the assessment of vulnerable plaque. Eur Heart J. 2007;28:1283–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Schaar JA, de Korte CL, Mastik F, Strijder C, Pasterkamp G, Boersma E, et al. Characterizing vulnerable plaque features with intravascular elastography. Circulation. 2003;108:2636–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Schaar JA, van der Steen AF, Mastik F, Baldewsing RA, Serruys PW. Intravascular palpography for vulnerable plaque assessment. J Am Coll Cardiol. 2006;47:C86–91.PubMedCrossRefGoogle Scholar
  37. 37.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.PubMedCrossRefGoogle Scholar
  38. 38.
    Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Stamper D, Weissman NJ, Brezinski M. Plaque characterization with optical coherence tomography. J Am Coll Cardiol. 2006;47:C69–79.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang J, Geng YJ, Guo B, Klima T, Lal BN, Willerson JT, et al. Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques. J Am Coll Cardiol. 2002;39:1305–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Caplan JD, Waxman S, Nesto RW, Muller JE. Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques. J Am Coll Cardiol. 2006;47:C92–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Crouse III JR, Craven TE, Hagaman AP, Bond MG. Association of coronary disease with segment-specific intimal-medial thickening of the extracranial carotid artery. Circulation. 1995;92:1141–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Chambless LE, Heiss G, Folsom AR, Rosamond W, Szklo M, Sharrett AR, et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol. 1997;146:483–94.PubMedCrossRefGoogle Scholar
  44. 44.
    O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson Jr SK. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med. 1999;340:14–22.PubMedCrossRefGoogle Scholar
  45. 45.
    Owen DR, Shalhoub J, Miller S, Gauthier T, Doryforou O, Davies AH, et al. Inflammation within carotid atherosclerotic plaque: assessment with late-phase contrast-enhanced US. Radiology. 2010;255:638–44.Google Scholar
  46. 46.
    Shah F, Balan P, Weinberg M, Reddy V, Neems R, Feinstein M, et al. 2007. Contrast-enhanced ultrasound imaging of atherosclerotic carotid plaque neovascularization: a new surrogate marker of atherosclerosis? Vasc Med. 2007;12:291–7.Google Scholar
  47. 47.
    Coli S, Magnoni M, Sangiorgi G, Marrocco-Trischitta MM, Melisurgo G, Mauriello A, et al. Contrast-enhanced ultrasound imaging of intraplaque neovascularization in carotid arteries: correlation with histology and plaque echogenicity. J Am Coll Cardiol. 2008;52:223–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002;106:1368–73.PubMedCrossRefGoogle Scholar
  49. 49.
    Cai J, Hatsukami TS, Ferguson MS, Kerwin WS, Saam T, Chu B, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation. 2005;112:3437–44.PubMedCrossRefGoogle Scholar
  50. 50.
    Kerwin W, Hooker A, Spilker M, Vicini P, Ferguson M, Hatsukami T, et al. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation. 2003;107:851–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Owen DRJ, Lindsay AC, Choudhury RP, Fayad ZA. Imaging of atherosclerosis. Annu Rev Med. 2011;62:25–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristicsof atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49–57.PubMedCrossRefGoogle Scholar
  53. 53.
    Nikolaou K, Knez A, Rist C, Wintersperger BJ, Leber A, Johnson T, et al. Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. Am J Radiol. 2006;187:111–7.Google Scholar
  54. 54.
    Osborn EA, Jaffer FA. The year in molecular imaging. JACC Cardiovascular Imaging. 2010;3:1181–95.PubMedCrossRefGoogle Scholar
  55. 55.
    Leuschner F, Nahrendorf M. Molecular imaging of coronary atherosclerosis and myocardial infarction: considerations for the bench and perspectives for the clinic. Circulation Res. 2011;108:593–606.PubMedCrossRefGoogle Scholar
  56. 56.
    Gallino A, Stuber M, Crea F. “In vivo” imaging of atherosclerosis. Atherosclerosis. 2012;224:25–36.PubMedCrossRefGoogle Scholar
  57. 57.
    Rosenbaum D, Millon A, Fayad ZA. Molecular imaging in atherosclerosis: FDG PET. Curr Atheroscler Rep. 2012;14:429–37.PubMedCrossRefGoogle Scholar
  58. 58.
    Hiari N, Rudd JHF. FDG PET imaging and cardiovascular inflammation. Curr Cardiol Rep. 2011;13:43–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Yun M, Yeh D, Araujo LI, Jang S, Newberg A, Alavi A. F-18 FDG uptake in the large arteries: a new observation. Clin Nucl Med. 2001;26:314–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Worthley SG, Zhang ZY, Machac J, Helft G, Tang C, Liew GY, et al. In vivo noninvasive serial monitoring of FDG-PET progression and regression in a rabbit model of atherosclerosis. Int J Cardiovasc Imaging. 2009;25:251–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Zhao QM, Feng TT, Zhao X, Xu ZM, Liu Y, Li DP, et al. Imaging of atherosclerotic aorta of rabbit model by detection of plaque inflammation with fluorine- 18 fluorodeoxyglucose positron emission tomography/ computed tomography. Chin Med J. 2011;124:911–7.PubMedGoogle Scholar
  62. 62.
    Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11.PubMedCrossRefGoogle Scholar
  63. 63.
    Kwee RM, Truijman MT, Mess WH, Teule GJ, ter Berg JW, Franke CL, et al. Potential of integrated [18F] fluorodeoxyglucose positron-emission tomography/CT in identifying vulnerable carotid plaques. Am J Neuroradiol. 2011;32:950–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Davies JR, Rudd JH, Fryer TD, Graves MJ, Clark JC, Kirkpatrick PJ, et al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high resolution magnetic resonance imaging. Stroke. 2005;36:2642–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Dunphy MP, Freiman A, Larson SM, Strauss HW. Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med. 2005;46:1278–84.PubMedGoogle Scholar
  66. 66.
    Rudd JH, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis. inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med. 2008;49:871–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Basu S, Zhuang H, Alavi A. Imaging of lower extremity artery atherosclerosis in diabetic foot: FDG-PET imaging and histopathological correlates. Clin Nucl Med. 2007;32:567–8.PubMedCrossRefGoogle Scholar
  68. 68.
    • Rogers IS, Nasir k, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovascular Curr Cardiovasc Imaging. 2010;3:388–97. This study compared coronary artery FDG uptake in patients with ACS and stable angina.Google Scholar
  69. 69.
    Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med. 2009;50:563–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Yun M, Jang S, Cucchiara A, Newberg AB, Alavi A. 18F FDG uptake in the large arteries: a correlation study with the atherogenic risk factors. Semin Nucl Med. 2002;32:70–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Tahara N, Kai H, Yamagishi S, Mizoguchi M, Nakaura H, Ishibashi M, et al. Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol. 2007;49:1533–9.Google Scholar
  72. 72.
    Rudd JH, Myers KS, Bansilal S, Machac J, Woodward M, Fuster V, et al. Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers: a prospective fluorodeoxyglucose positron-emission tomography/computed tomography imaging study. Circulation Cardiovasc Imaging. 2009;2:107–15.CrossRefGoogle Scholar
  73. 73.
    Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a non invasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48:1818–24.PubMedCrossRefGoogle Scholar
  74. 74.
    Pedersen SF, Graebe M, Fisker Hag AM, Højgaard L, Sillesen H, Kjaer A. Gene expression and 18FDG uptake in atherosclerotic carotid plaques. Nucl Med Commun. 2010;31:423–9.PubMedGoogle Scholar
  75. 75.
    Yoo HJ, Kim S, Park MS, Yang SJ, Kim TN, Seo JA, et al. Vascular inflammation stratified by C-reactive protein and low-density lipoprotein cholesterol levels: analysis with 18F-FDG PET. J Nucl Med. 2011;52:10–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Pedersen SF, Graebe M, Hag AM, Hoejgaard L, Sillesen H, Kjaer A. Microvessel density but not neoangiogenesis is associated with (18)F-FDG uptake in human atherosclerotic carotid plaques. Mol Imaging Biol. 2012;14:384–92.PubMedCrossRefGoogle Scholar
  77. 77.
    Wu Y-W, Kao H-L, Chen MF, Lee BC, Tseng WY, Jeng JS, et al. Characterization of plaques using 18F-FDG PET/CT in patients with carotid atherosclerosis and correlation with matrix metalloproteinase-1. J Nucl Med. 2007;48:227–33.PubMedGoogle Scholar
  78. 78.
    Choi HY, Kim S, Yang SJ, Yoo HJ, Seo JA, Kim SG, et al. Association of adiponectin, resistin, and vascular inflammation: analysis with 18F-fluorodeoxyglucose positron emission tomography. Arterioscler Thromb Vasc Biol. 2011;31:944–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Graebe M, Pedersen SF, Højgaard L, Kjaer A, Sillesen H. 18FDG PET and ultrasound echolucency in carotid artery plaques. JACC Cardiovasc Imaging. 2010;3:289–95.Google Scholar
  80. 80.
    Silvera SS, Aidi HE, Rudd JH, Mani V, Yang L, Farkouh M, et al. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis. 2009;207:139–43.PubMedCrossRefGoogle Scholar
  81. 81.
    Figueroa AL, Subramanian SS, Cury RC, Truong QA, Gardecki JA, Tearney GJ, et al. Distribution of inflammation within carotid atherosclerotic plaques with high risk morphological features: a comparison between PET activity, plaque morphology and histopathology. Circulation Cardiovasc Imaging. 2012;5:69–77.Google Scholar
  82. 82.
    Menezes LJ, Kotze CW, Agu O, Richards T, Brookes J, Goh VJ, et al. Investigating vulnerable atheroma using combined 18F-FDG PET/CT angiography of carotid plaque with immunohistochemical validation. J Nucl Med. 2011;52:1698–703.Google Scholar
  83. 83.
    Cocker MS, McArdle B, Spence JD, Lum C, Hammond RR, Ongaro DC, et al. Imaging atherosclerosis with hybrid [18F] fluorodeoxyglucose positron emission tomography/computed tomography imaging: what Leonardo da Vinci could not see. J Nucl Cardiol. 2012;19:1211–25.PubMedCrossRefGoogle Scholar
  84. 84.
    Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol. 2007;50:892–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Moustafa RR, Izquierdo-Garcia D, Fryer TD, Graves MJ, Rudd JH, Gillard JH, et al. Carotid plaque inflammation is associated with cerebral microembolism in patients with recent transient ischemic attack or stroke: a pilot study. Circulation Cardiovasc Imaging. 2010;3:536–41.CrossRefGoogle Scholar
  86. 86.
    • Marnane M, Merwick A, Sheehan OC, Hannon N, Foran P, Grant T. Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann Neurol. 2012;71:709–18. This study evaluated the relationship between increased carotid FDG uptake and early stroke recurrence.PubMedCrossRefGoogle Scholar
  87. 87.
    Ogawa M, Nakamura S, Saito Y, Kosugi M, Magata Y. What can be seen by 18F-FDG PET in atherosclerosis imaging? The effect of foam cell formation on 18F-FDG uptake to macrophages in vitro. J Nucl Med. 2012;53:55–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Sluimer JC, Gasc JM, van Wanroij JL, Kisters N, Groeneweg M, Sollewijn Gelpke MD, et al. Hypoxia, hypoxiainducible transcription factor, and macrophages in human athero\sclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol. 2008;51:1258–65.PubMedCrossRefGoogle Scholar
  89. 89.
    Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011;364:656–65.PubMedCrossRefGoogle Scholar
  90. 90.
    •• Folco EJ, Sheikine Y, Rocha VZ, Christen T, Shvartz E, Sukhova GK, et al. Hypoxia but not inflammation augments glucose uptake in human macrophages. Implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy- D-glucose positron emission tomography. J Am Coll Cardiol. 2011;58:603–14. This study evaluated whether increased macrophage FDG uptake may occur due to hypoxia or inflammation.Google Scholar
  91. 91.
    Libby P, Folco E. Tension in the plaque: hypoxia modulates metabolism in atheroma. Circulation Res. 2011;109:1100–2.PubMedCrossRefGoogle Scholar
  92. 92.
    Boström P, Magnusson B, Svensson PA, Wiklund O, Borén J, Carlsson LM, et al. Hypoxia converts human macrophages into triglyceride-loaded foam cells. Arterioscler Thromb Vasc Biol. 2006;26:1871–6.Google Scholar
  93. 93.
    •• Dwek MR, Chow MWL, Joshi NV, Williams MC, Jones C, Fletcher AM, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59:1539–48. This study evaluated the use of NaF PET as a marker of early coronary artery calcification.Google Scholar
  94. 94.
    Dwek MR, Joshi FR, Newby DE, Rudd JHF. Noninvasive imaging in cardiovascular therapy: the promise of coronary arterial 18F-sodium fluoride uptake as a marker of plaque biology. Expert Rev Cardiovasc Ther. 2012;10:1075–7.CrossRefGoogle Scholar
  95. 95.
    Wu X, Maehara A, Mintz GS, Kubo T, Xu K, Choi SY, et al. Virtual histology intravascular ultrasound analysis of nonculprit attenuated plaques detected by grayscale intravascular ultrasound in patients with acute coronary syndromes. Am J Cardiol. 2010;105:48–53.PubMedCrossRefGoogle Scholar
  96. 96.
    Derlin T, Tóth Z, Papp L, Wisotzki C, Apostolova I, Habermann CR, et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med. 2011;52:1020–7.Google Scholar
  97. 97.
    Derlin T, Wisotzki C, Richter U, Apostolova I, Bannas P, Weber C, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J NuclMed. 2011;52:362–8.CrossRefGoogle Scholar
  98. 98.
    Dweck MR, Jones C, Joshi NV, Fletcher AM, Richardson H, White A, et al. Assessment of valvular calcification and inflammation by positron emission tomography with patients with aortic stenosis. Circulation. 2011;125:76–86.PubMedCrossRefGoogle Scholar
  99. 99.
    Fujimura Y, Hwang PM, Trout Iii H, Kozloff L, Imaizumi M, Innis RB, et al. Increased peripheral benzodiazepine receptors in arterial plaque of patients with atherosclerosis: an autoradiographic study with [(3)H]PK 11195. Atherosclerosis. 2008;201:108–11.PubMedCrossRefGoogle Scholar
  100. 100.
    Pugliese F, Gaemperli O, Kinderlerer AR, Lamare F, Shalhoub J, Davies AH, et al. Imaging of vascular inflammation with [11C]-PK11195 and positron emission tomography/computed tomography angiography. J Am Coll Cardiol. 2010;56:653–61.PubMedCrossRefGoogle Scholar
  101. 101.
    •• Gaemperli O, Shalhoub J, Owen DRJ, Lamare F, Johansson S, Fouladi N, et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J. 2012;33:1902–10. This study evaluated the use of PK11195 PET to image carotid artery inflammation.Google Scholar
  102. 102.
    Laitinen IEK, Luoto P, Någren K, Marjamäki PM, Silvola JM, Hellberg S, et al. Uptake of 11C-Choline in mouse atherosclerotic plaques. J Nucl Med. 2010;51:798–802.PubMedCrossRefGoogle Scholar
  103. 103.
    Matter CM, Wyss MT, Meier P, Späth N, von Lukowicz T, Lohmann C, et al. 18F-Choline images murine atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol. 2006;26:584–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Bucerius J, Schmaljohann J, Böhm I, Palmedo H, Guhlke S, Tiemann K, et al. Feasibility of 18F-fluoromethylcholine PET/CT for imaging of vessel wall alterations in humans—first results. Eur J Nucl Med Mol Imaging. 2008;35:815–20.Google Scholar
  105. 105.
    Kato K, Schober O, Ikeda M, Schäfers M, Ishigaki T, Kies P, et al. Evaluation and comparison of 11C-choline uptake and calcification in aortic and common carotid arterial walls with combined PET/CT. Eur J Nucl Med Mol Imaging. 2009;36:1622–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Derlin T, Habermann CR, Lengyel Z, Busch JD, Wisotzki C, Mester J, et al. Feasibility of 11C-acetate PET/CT for fatty acid synthesis in the atherosclerotic vessel wall. J Nucl Med. 2011;52:1848–54.PubMedCrossRefGoogle Scholar
  107. 107.
    • Rominger A, Saam T, Vogl E. In vivo imaging of macrophage activity in the coronary arteries using 68Ga-DOTATATE PET/CT: correlation with coronary calcium burden and risk factors. J Nucl Med. 2010;51:193–7. This study evaluated the use of DOTATATE PET to image coronary artery inflammation.Google Scholar
  108. 108.
    Li X, Samnick S, Lapa C, Israel I, Buck AK, Kreissl MC, et al. Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with18F-FDG, calcium burden and risk factors. EJNMMI Res. 2012;2:52:1–10.Google Scholar
  109. 109.
    Rogers IS, Tawakol A. Imaging of coronary inflammation with FDG-PET: feasibility and clinical hurdles. Curr Cardiol Rep. 2011;13:138–44.PubMedCrossRefGoogle Scholar
  110. 110.
    Saam T, Rominger A, Wolpers S, Nikolaou K, Rist C, Greif M, et al. Association of inflammation of the left anterior descending coronary artery with cardiovascular risk factors, plaque burden, and pericardial fat volume: a PET/CT study. Eur J Nucl Med Mol Imaging. 2010;37:1203–12.PubMedCrossRefGoogle Scholar
  111. 111.
    Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low carbohydrate diet. Am J Roentgenol. 2008;190:W151–6.CrossRefGoogle Scholar
  112. 112.
    Cheng VY, Slomka PJ, Le Meunier L, Tamarappoo BK, Nakazato R, Dey D, et al. Coronary arterial 18F-FDG uptake by fusion of PET and coronary CT angiography at sites of percutaneous stenting for acute myocardial infarction and stable coronary artery disease. J Nucl Med. 2012;53:575–83.PubMedCrossRefGoogle Scholar
  113. 113.
    Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;48:1825–31.PubMedCrossRefGoogle Scholar
  114. 114.
    Wu YW, Kao HL, Huang CL, Chen MF, Lin LY, Wang YC, et al. The effects of 3-month atorvastatin therapy on arterial inflammation, calcification, abdominal adipose tissue, and circulating biomarkers. Eur J Nucl Med Mol Imaging. 2012;39:399–407.PubMedCrossRefGoogle Scholar
  115. 115.
    Elkhawad M, Rudd JHF, Sarov-Blat L, Cai G, Wells R, Davies LC, et al. Effects of p38 Mitogen-activated protein kinase inhibition on vascular and systemic inflammation in patients with atherosclerosis. JACC: Cardiovascular Imaging. 2012;5:911–22.PubMedCrossRefGoogle Scholar
  116. 116.
    Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, et al. Safety and efficacy of dalcetrapib onatherosclerotic disease using novel noninvasive multimodality imaging (dal-PLAQUE): a randomized clinical trial. Lancet. 2011;378:1547–59.PubMedCrossRefGoogle Scholar
  117. 117.
    Mizoguchi M, Tahara NMD, Tahara A, Nitta Y, Kodama N, Oba T, et al. Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes a prospective, randomized, comparator controlled study using serial FDG PET/CT imaging study of carotid artery and ascending aorta. JACC: Cardiovascular Imaging. 2011;4:1111–8.Google Scholar
  118. 118.
    • Mäki-Petäjä KM, Elkhawad M, Cheriyan J, Joshi FR, Ostör AJ, Hall FC, et al. Anti-tumor necrosis factor-α therapy reduces aortic inflammation and stiffness in patients with rheumatoid arthritis. Circulation. 2012;126:2473–80. This study investigated the effect of anti TNFα therapy on aortic inflammation using FDG-PET/CT.Google Scholar
  119. 119.
    Paulmier B, Duet M, Khayat R, Pierquet-Ghazzar N, Laissy JP, Maunoury C, et al. Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol. 2008;15:209–17.PubMedCrossRefGoogle Scholar
  120. 120.
    Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50:1611–20.PubMedCrossRefGoogle Scholar
  121. 121.
    Grandpierre S, Desandes E, Meneroux B, Djaballah W, Mandry D, Netter F, et al. Arterial Foci of F-18 fluorodeoxyglucose are associated with an enhanced risk of subsequent ischemic stroke in cancer patients: a case-control pilot study. Clin Nucl Med. 2011;36:85–90.PubMedCrossRefGoogle Scholar
  122. 122.
    Muntendam P, McCall C, Sanz J, Falk E, Fuster V. The BioImage Study: novel approaches to risk assessment in the primary prevention of atherosclerotic cardiovascular disease—study design and objectives. Am Heart J. 2010;160:49–57.e1.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jason M. Tarkin
    • 1
  • Francis R. Joshi
    • 1
  • James H. F. Rudd
    • 1
  1. 1.Division of Cardiovascular MedicineUniversity of Cambridge, Addenbrooke’s HospitalCambridgeUK

Personalised recommendations