Current Cardiovascular Imaging Reports

, Volume 6, Issue 2, pp 117–127 | Cite as

A Critical Review of Different Imaging Methods for the Assessment of Myocardial Ischemia

Cardiac Magnetic Resonance (E Nagel, Section Editor)

Abstract

Coronary artery disease (CAD) continues to be a major cause of morbidity and mortality in industrialized countries. Myocardial ischemia imaging is increasingly being performed to detect obstructive CAD, guide therapy, and provide prognostic information. There are several imaging modalities available to assess the presence and extent of myocardial ischemia, such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), stress echocardiography, and cardiovascular magnetic resonance imaging (CMR). This review discusses the various imaging methods, providing an overview of the specific benefits and drawbacks, and reviews recent literature on the diagnostic and prognostic value of each technique.

Keywords

Coronary artery disease Myocardial ischemia Non-invasive imaging Single-photon emission computed tomography Positron emission tomography Echocardiography Cardiovascular magnetic resonance imaging Computed tomography Fractional flow reserve Diagnostic accuracy Prognosis 

Notes

Disclosure

No potential conflicts of interest relevant to this article were reported.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e46–e215.PubMedCrossRefGoogle Scholar
  2. 2.
    Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single-photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998;97(6):535–43.PubMedCrossRefGoogle Scholar
  3. 3.
    Jahnke C, Nagel E, Gebker R, Kokocinski T, Kelle S, Manka R, et al. Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation. 2007;115(13):1769–76.PubMedCrossRefGoogle Scholar
  4. 4.
    Wijns W, Kolh P, Danchin N, Di Mario C, Falk V, Folliguet T, et al. Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2010;31(20):2501–55.PubMedCrossRefGoogle Scholar
  5. 5.
    Smith Jr SC, Feldman TE, Hirshfeld Jr JW, Jacobs AK, Kern MJ, King 3rd SB, et al. ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention). J Am Coll Cardiol. 2006;47(1):e1–e121.PubMedCrossRefGoogle Scholar
  6. 6.
    Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol. 1974;34(1):48–55.PubMedCrossRefGoogle Scholar
  7. 7.
    Tayebjee MH, Lip GY, MacFadyen RJ. Collateralization and the response to obstruction of epicardial coronary arteries. QJM. 2004;97(5):259–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Nesto RW, Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol. 1987;59(7):23C–30C.PubMedCrossRefGoogle Scholar
  9. 9.
    Leong-Poi H, Rim SJ, Le DE, Fisher NG, Wei K, Kaul S. Perfusion versus function: the ischemic cascade in demand ischemia: implications of single-vessel versus multivessel stenosis. Circulation. 2002;105(8):987–92.PubMedCrossRefGoogle Scholar
  10. 10.
    Anagnostopoulos C, Bax J, Nihoyannopoulos P, van der Wall E. Noninvasive imaging of myocardial ischemia. London: Springer; 2006.CrossRefGoogle Scholar
  11. 11.
    De Bruyne B, Baudhuin T, Melin JA, Pijls NH, Sys SU, Bol A, et al. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation. 1994;89(3):1013–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334(26):1703–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Watkins S, McGeoch R, Lyne J, Steedman T, Good R, McLaughlin MJ, et al. Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation. 2009;120(22):2207–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Husser O, Bodi V, Sanchis J, Mainar L, Nunez J, Lopez-Lereu MP, et al. Additional diagnostic value of systolic dysfunction induced by dipyridamole stress cardiac magnetic resonance used in detecting coronary artery disease. Rev Esp Cardiol. 2009;62(4):383–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Fintel DJ, Links JM, Brinker JA, Frank TL, Parker M, Becker LC. Improved diagnostic performance of exercise thallium-201 single photon emission computed tomography over planar imaging in the diagnosis of coronary artery disease: a receiver operating characteristic analysis. J Am Coll Cardiol. 1989;13(3):600–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Underwood SR, Anagnostopoulos C, Cerqueira M, Ell PJ, Flint EJ, Harbinson M, et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging. 2004;31(2):261–91.PubMedCrossRefGoogle Scholar
  17. 17.
    Abidov A, Bax JJ, Hayes SW, Hachamovitch R, Cohen I, Gerlach J, et al. Transient ischemic dilation ratio of the left ventricle is a significant predictor of future cardiac events in patients with otherwise normal myocardial perfusion SPECT. J Am Coll Cardiol. 2003;42(10):1818–25.PubMedCrossRefGoogle Scholar
  18. 18.
    Valdiviezo C, Motivala AA, Hachamovitch R, Chamarthy M, Navarro PC, Ostfeld RJ, et al. The significance of transient ischemic dilation in the setting of otherwise normal SPECT radionuclide myocardial perfusion images. J Nucl Cardiol. 2011;18(2):220–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Gibbons RJ, Abrams J, Chatterjee K, Daley J, Deedwania PC, Douglas JS, et al. ACC/AHA 2002 guideline update for the management of patients with chronic stable angina–summary article: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on the Management of Patients With Chronic Stable Angina). J Am Coll Cardiol. 2003;41(1):159–68.PubMedCrossRefGoogle Scholar
  20. 20.
    Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging–executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol. 2003;42(7):1318–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F, et al. Guidelines on the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J. 2006;27(11):1341–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Marcassa C, Bax JJ, Bengel F, Hesse B, Petersen CL, Reyes E, et al. Clinical value, cost-effectiveness, and safety of myocardial perfusion scintigraphy: a position statement. Eur Heart J. 2008;29(4):557–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Brindis RG, Douglas PS, Hendel RC, Peterson ED, Wolk MJ, Allen JM, et al. ACCF/ASNC appropriateness criteria for single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI): a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group and the American Society of Nuclear Cardiology endorsed by the American Heart Association. J Am Coll Cardiol. 2005;46(8):1587–605.PubMedCrossRefGoogle Scholar
  24. 24.
    Skinner JS, Smeeth L, Kendall JM, Adams PC, Timmis A. NICE guidance. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. Heart. 2010;96(12):974–8.PubMedCrossRefGoogle Scholar
  25. 25.
    •• Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012;59(19):1719–28. Large meta-analysis investigating and comparing the diagnostic performance of the three most commonly used non-invasive myocardial perfusion imaging modalities (SPECT, CMR, and PET) by pooling the results of 166 articles.PubMedCrossRefGoogle Scholar
  26. 26.
    Ghadri JR, Pazhenkottil AP, Nkoulou RN, Goetti R, Buechel RR, Husmann L, et al. Very high coronary calcium score unmasks obstructive coronary artery disease in patients with normal SPECT MPI. Heart. 2011;97(12):998–1003.PubMedCrossRefGoogle Scholar
  27. 27.
    Thilo C, Schoepf UJ, Gordon L, Chiaramida S, Serguson J, Costello P. Integrated assessment of coronary anatomy and myocardial perfusion using a retractable SPECT camera combined with 64-slice CT: initial experience. Eur Radiol. 2009;19(4):845–56.PubMedCrossRefGoogle Scholar
  28. 28.
    Schepis T, Gaemperli O, Koepfli P, Namdar M, Valenta I, Scheffel H, et al. Added value of coronary artery calcium score as an adjunct to gated SPECT for the evaluation of coronary artery disease in an intermediate-risk population. J Nucl Med. 2007;48(9):1424–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Rispler S, Keidar Z, Ghersin E, Roguin A, Soil A, Dragu R, et al. Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol. 2007;49(10):1059–67.PubMedCrossRefGoogle Scholar
  30. 30.
    Blankstein R, Di Carli MF. Integration of coronary anatomy and myocardial perfusion imaging. Nat Rev Cardiol. 2010;7(4):226–36.PubMedCrossRefGoogle Scholar
  31. 31.
    Slomka PJ, Patton JA, Berman DS, Germano G. Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol. 2009;16(2):255–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Sharir T, Slomka PJ, Hayes SW, DiCarli MF, Ziffer JA, Martin WH, et al. Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol. 2010;55(18):1965–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Anagnostopoulos C, Neill J, Reyes E, Prvulovich E. Myocardial perfusion scintigraphy: technical innovations and evolving clinical applications. Heart. 2011;98(5):353–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol. 2004;11(2):171–85.PubMedCrossRefGoogle Scholar
  35. 35.
    Kang X, Shaw LJ, Hayes SW, Hachamovitch R, Abidov A, Cohen I, et al. Impact of body mass index on cardiac mortality in patients with known or suspected coronary artery disease undergoing myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol. 2006;47(7):1418–26.PubMedCrossRefGoogle Scholar
  36. 36.
    Shaw LJ, Mieres JH, Hendel RH, Boden WE, Gulati M, Veledar E, et al. Comparative effectiveness of exercise electrocardiography with or without myocardial perfusion single photon emission computed tomography in women with suspected coronary artery disease: results from the What Is the Optimal Method for Ischemia Evaluation in Women (WOMEN) trial. Circulation. 2011;124(11):1239–49.PubMedCrossRefGoogle Scholar
  37. 37.
    Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging: similar patient mortality with reduced radiation exposure. J Am Coll Cardiol. 2009;55(3):221–30.PubMedCrossRefGoogle Scholar
  38. 38.
    Duvall WL, Wijetunga MN, Klein TM, Razzouk L, Godbold J, Croft LB, et al. The prognosis of a normal stress-only Tc-99m myocardial perfusion imaging study. J Nucl Cardiol. 2010;17(3):370–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117(10):1283–91.PubMedCrossRefGoogle Scholar
  40. 40.
    • Hachamovitch R, Rozanski A, Shaw LJ, Stone GW, Thomson LE, Friedman JD, et al. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J. 2011;32(8):1012–24. Large, observational study demonstrating the value of stress ischemia imaging in identifying patients that are likely to benefit from early revascularization versus medical therapy alone.PubMedCrossRefGoogle Scholar
  41. 41.
    Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007;116(11):1290–305.PubMedCrossRefGoogle Scholar
  42. 42.
    Pazhenkottil AP, Herzog BA, Husmann L, Buechel RR, Burger IA, Valenta I, et al. Non-invasive assessment of coronary artery disease with CT coronary angiography and SPECT: a novel dose-saving fast-track algorithm. Eur J Nucl Med Mol Imaging. 2009;37(3):522–7.PubMedCrossRefGoogle Scholar
  43. 43.
    • Ghosh N, Rimoldi OE, Beanlands RS, Camici PG. Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur Heart J. 2010;31(24):2984–95. Interesting, comprehensive review on the basic principles of PET imaging, as well as its main applications in the assessment of myocardial blood flow and viability.PubMedCrossRefGoogle Scholar
  44. 44.
    Dhar R, Ananthasubramaniam K. Rubidium-82 cardiac positron emission tomography imaging: an overview for the general cardiologist. Cardiol Rev. 2011;19(5):255–63.PubMedCrossRefGoogle Scholar
  45. 45.
    Rischpler C, Park MJ, Fung GS, Javadi M, Tsui BM, Higuchi T. Advances in PET myocardial perfusion imaging: F-18 labeled tracers. Ann Nucl Med. 2011;26(1):1–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Berman DS, Germano G, Slomka PJ. Improvement in PET myocardial perfusion image quality and quantification with flurpiridaz F 18. J Nucl Cardiol. 2012;19 Suppl 1:S38–45.PubMedCrossRefGoogle Scholar
  47. 47.
    Saraste A, Kajander S, Han C, Nesterov SV, Knuuti J. PET: is myocardial flow quantification a clinical reality? J Nucl Cardiol. 2012;19(5):1044–59.PubMedCrossRefGoogle Scholar
  48. 48.
    Kajander S, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122(6):603–13.PubMedCrossRefGoogle Scholar
  49. 49.
    Nandalur KR, Dwamena BA, Choudhri AF, Nandalur SR, Reddy P, Carlos RC. Diagnostic performance of positron emission tomography in the detection of coronary artery disease: a meta-analysis. Acad Radiol. 2008;15(4):444–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Stewart RE, Schwaiger M, Molina E, Popma J, Gacioch GM, Kalus M, et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol. 1991;67(16):1303–10.PubMedCrossRefGoogle Scholar
  51. 51.
    Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol. 2006;13(1):24–33.PubMedCrossRefGoogle Scholar
  52. 52.
    Marwick TH, Shan K, Patel S, Go RT, Lauer MS. Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol. 1997;80(7):865–70.PubMedCrossRefGoogle Scholar
  53. 53.
    Yoshinaga K, Chow BJ, Williams K, Chen L, DeKemp RA, Garrard L, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol. 2006;48(5):1029–39.PubMedCrossRefGoogle Scholar
  54. 54.
    Dorbala S, Hachamovitch R, Curillova Z, Thomas D, Vangala D, Kwong RY, et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging. 2009;2(7):846–54.PubMedCrossRefGoogle Scholar
  55. 55.
    Cullen MW, Pellikka PA. Recent advances in stress echocardiography. Curr Opin Cardiol. 2011;26(5):379–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Gorcsan 3rd J, Tanaka H. Echocardiographic assessment of myocardial strain. J Am Coll Cardiol. 2011;58(14):1401–13.PubMedCrossRefGoogle Scholar
  57. 57.
    Heijenbrok-Kal MH, Fleischmann KE, Hunink MG. Stress echocardiography, stress single-photon-emission computed tomography and electron beam computed tomography for the assessment of coronary artery disease: a meta-analysis of diagnostic performance. Am Heart J. 2007;154(3):415–23.PubMedCrossRefGoogle Scholar
  58. 58.
    Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U, et al. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation. 2003;107(16):2120–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Takagi T, Takagi A, Yoshikawa J. Detection of coronary artery disease using delayed strain imaging at 5 min after the termination of exercise stress: head to head comparison with conventional treadmill stress echocardiography. J Cardiol. 2010;55(1):41–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Gaibazzi N, Rigo F, Reverberi C. Detection of coronary artery disease by combined assessment of wall motion, myocardial perfusion and coronary flow reserve: a multiparametric contrast stress-echocardiography study. J Am Soc Echocardiogr. 2010;23(12):1242–50.PubMedCrossRefGoogle Scholar
  61. 61.
    •• de Jong MC, Genders TS, van Geuns RJ, Moelker A, Hunink MG. Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis. Eur Radiol. 2012;22(9):1881–95. Recent meta-analysis on the diagnostic performance of stress myocardial perfusion by CMR, echocardiography, and SPECT in the detection of obstructive coronary artery disease. Google Scholar
  62. 62.
    de Jong MC, Genders TS, Hunink MG. Reply to letter to the editor re: diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis. Eur Radiol. 2013;23(2):349–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Metz LD, Beattie M, Hom R, Redberg RF, Grady D, Fleischmann KE. The prognostic value of normal exercise myocardial perfusion imaging and exercise echocardiography: a meta-analysis. J Am Coll Cardiol. 2007;49(2):227–37.PubMedCrossRefGoogle Scholar
  64. 64.
    Makani H, Bangalore S, Halpern D, Makwana HG, Chaudhry FA. Cardiac outcomes with submaximal normal stress echocardiography: a meta-analysis. J Am Coll Cardiol. 2012;60(15):1393–401.PubMedCrossRefGoogle Scholar
  65. 65.
    Tsutsui JM, Elhendy A, Anderson JR, Xie F, McGrain AC, Porter TR. Prognostic value of dobutamine stress myocardial contrast perfusion echocardiography. Circulation. 2005;112(10):1444–50.PubMedCrossRefGoogle Scholar
  66. 66.
    Miszalski-Jamka T, Kuntz-Hehner S, Schmidt H, Peter D, Miszalski-Jamka K, Hammerstingl C, et al. Myocardial contrast echocardiography enhances long-term prognostic value of supine bicycle stress two-dimensional echocardiography. J Am Soc Echocardiogr. 2009;22(11):1220–7.PubMedCrossRefGoogle Scholar
  67. 67.
    • Fine NM, Pellikka PA. Stress echocardiography for the detection and assessment of coronary artery disease. J Nucl Cardiol. 2011;18(3):501–15. Excellent review on the role of stress echocardiography in de diagnosis and prognostic assessment of patients with coronary artery disease.PubMedCrossRefGoogle Scholar
  68. 68.
    Hendel RC, Patel MR, Kramer CM, Poon M, Carr JC, Gerstad NA, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006;48(7):1475–97.PubMedCrossRefGoogle Scholar
  69. 69.
    Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010;55(23):2614–62.PubMedCrossRefGoogle Scholar
  70. 70.
    Karamitsos TD, Arnold JR, Pegg TJ, Cheng AS, van Gaal WJ, Francis JM, et al. Tolerance and safety of adenosine stress perfusion cardiovascular magnetic resonance imaging in patients with severe coronary artery disease. Int J Cardiovasc Imaging. 2009;25(3):277–83.PubMedCrossRefGoogle Scholar
  71. 71.
    Karamitsos TD, Ntusi NA, Francis JM, Holloway CJ, Myerson SG, Neubauer S. Feasibility and safety of high-dose adenosine perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:66.PubMedCrossRefGoogle Scholar
  72. 72.
    Foster EL, Arnold JW, Jekic M, Bender JA, Balasubramanian V, Thavendiranathan P, et al. MR-compatible treadmill for exercise stress cardiac magnetic resonance imaging. Magn Reson Med. 2012;67(3):880–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Jerosch-Herold M, Muehling O, Wilke N. MRI of myocardial perfusion. Semin Ultrasound CT MR. 2006;27(1):2–10.PubMedCrossRefGoogle Scholar
  74. 74.
    Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, et al. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol. 2012;60(16):1546–55.PubMedCrossRefGoogle Scholar
  75. 75.
    Arnold JR, Karamitsos TD, Bhamra-Ariza P, Francis JM, Searle N, Robson MD, et al. Myocardial oxygenation in coronary artery disease: insights from blood oxygen level-dependent magnetic resonance imaging at 3 Tesla. J Am Coll Cardiol. 2012;59(22):1954–64.PubMedCrossRefGoogle Scholar
  76. 76.
    Nagel E, Lehmkuhl HB, Bocksch W, Klein C, Vogel U, Frantz E, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation. 1999;99(6):763–70.PubMedCrossRefGoogle Scholar
  77. 77.
    Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, et al. MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J. 2012. doi:10.1093/eurheartj/ehs022.
  78. 78.
    Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, et al. Superior diagnostic performance of perfusion-cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: The secondary endpoints of the multicenter multivendor MR-IMPACT II (Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial). J Cardiovasc Magn Reson. 2012;14(1):61.PubMedCrossRefGoogle Scholar
  79. 79.
    Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379(9814):453–60.PubMedCrossRefGoogle Scholar
  80. 80.
    Coelho-Filho OR, Seabra LF, Mongeon FP, Abdullah SM, Francis SA, Blankstein R, et al. Stress myocardial perfusion imaging by CMR provides strong prognostic value to cardiac events regardless of patient’s sex. JACC Cardiovasc Imaging. 2011;4(8):850–61.PubMedCrossRefGoogle Scholar
  81. 81.
    Lubbers DD, Rijlaarsdam-Hermsen D, Kuijpers D, Kerkhof M, Sijens PE, van Dijkman PR, et al. Performance of adenosine “stress-only” perfusion MRI in patients without a history of myocardial infarction: a clinical outcome study. Int J Cardiovasc Imaging. 2011;28(1):109–15.PubMedCrossRefGoogle Scholar
  82. 82.
    Kelle S, Chiribiri A, Vierecke J, Egnell C, Hamdan A, Jahnke C, et al. Long-term prognostic value of dobutamine stress CMR. JACC Cardiovasc Imaging. 2011;4(2):161–72.PubMedCrossRefGoogle Scholar
  83. 83.
    Bodi V, Sanchis J, Lopez-Lereu MP, Nunez J, Mainar L, Monmeneu JV, et al. Prognostic and therapeutic implications of dipyridamole stress cardiovascular magnetic resonance on the basis of the ischaemic cascade. Heart. 2009;95(1):49–55.PubMedCrossRefGoogle Scholar
  84. 84.
    Kalin R, Stanton MS. Current clinical issues for MRI scanning of pacemaker and defibrillator patients. Pacing Clin Electrophysiol. 2005;28(4):326–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Wilkoff BL, Bello D, Taborsky M, Vymazal J, Kanal E, Heuer H, et al. Magnetic resonance imaging in patients with a pacemaker system designed for the magnetic resonance environment. Hear Rhythm. 2011;8(1):65–73.CrossRefGoogle Scholar
  86. 86.
    Manka R, Jahnke C, Kozerke S, Vitanis V, Crelier G, Gebker R, et al. Dynamic 3-dimensional stress cardiac magnetic resonance perfusion imaging: detection of coronary artery disease and volumetry of myocardial hypoenhancement before and after coronary stenting. J Am Coll Cardiol. 2011;57(4):437–44.PubMedCrossRefGoogle Scholar
  87. 87.
    Manka R, Paetsch I, Kozerke S, Moccetti M, Hoffmann R, Schroeder J, et al. Whole-heart dynamic three-dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: determination of volumetric myocardial ischaemic burden and coronary lesion location. Eur Heart J. 2012;33(16):2016–24.PubMedCrossRefGoogle Scholar
  88. 88.
    Jogiya R, Kozerke S, Morton G, De Silva K, Redwood S, Perera D, et al. Validation of dynamic 3-dimensional whole heart magnetic resonance myocardial perfusion imaging against fractional flow reserve for the detection of significant coronary artery disease. J Am Coll Cardiol. 2012;60(8):756–65.PubMedCrossRefGoogle Scholar
  89. 89.
    Reiter T, Ritter O, Prince MR, Nordbeck P, Wanner C, Nagel E, et al. Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:31.PubMedCrossRefGoogle Scholar
  90. 90.
    U.S. Food and Drug Administration. FDA drug safety communication: new warnings for using gadolinium-based contrast agents in patients with kidney dysfunction. Available at http://www.fda.gov/Drugs/DrugSafety/ucm223966.htm. Accessed September 2012.
  91. 91.
    European Medicine Agency. Assessment report for Gadolinium-containing contrast agents. Available at http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/gadolinium_31/WC500099538.pdf. Accessed September 2012.
  92. 92.
    Feuchtner G, Goetti R, Plass A, Wieser M, Scheffel H, Wyss C, et al. Adenosine stress high-pitch 128-slice dual-source myocardial computed tomography perfusion for imaging of reversible myocardial ischemia: comparison with magnetic resonance imaging. Circ Cardiovasc Imaging. 2011;4(5):540–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Feuchtner GM, Plank F, Pena C, Battle J, Min J, Leipsic J, et al. Evaluation of myocardial CT perfusion in patients presenting with acute chest pain to the emergency department: comparison with SPECT-myocardial perfusion imaging. Heart. 2012;98(20):1510–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24.PubMedCrossRefGoogle Scholar
  95. 95.
    Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58(19):1989–97.PubMedCrossRefGoogle Scholar
  96. 96.
    Iskander S, Iskandrian AE. Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi imaging. J Am Coll Cardiol. 1998;32(1):57–62.PubMedCrossRefGoogle Scholar
  97. 97.
    Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 Suppl):C13–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Hulten EA, Carbonaro S, Petrillo SP, Mitchell JD, Villines TC. Prognostic value of cardiac computed tomography angiography: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;57(10):1237–47.PubMedCrossRefGoogle Scholar
  99. 99.
    Hussain ST, Paul M, Plein S, Shah AM, McCann G, Marber MS, et al. Design and rationale of the MR-INFORM study: stress perfusion cardiovascular magnetic resonance imaging to guide the management of patients with stable coronary artery disease. J Cardiovasc Magn Reson. 2012;14(1):65.PubMedCrossRefGoogle Scholar
  100. 100.
    National Heart, Lung, and Blood Institute (NHLBI). International Study of Comparative Health Effictiveness With Medical and Invasive Approaches (ISCHEMIA). Available at: http://www.clinicaltrials.gov/ct2/show/NCT01471522?term=NCT01471522&rank=1. Accessed December 2012.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Caroline Jaarsma
    • 1
    • 2
    • 3
  • Eike Nagel
    • 4
  • Simon Schalla
    • 1
    • 2
    • 3
  1. 1.Department of CardiologyMaastricht University Medical CenterMaastrichtThe Netherlands
  2. 2.Department of RadiologyMaastricht University Medical CenterMaastrichtThe Netherlands
  3. 3.Cardiovascular Research InstituteMaastrichtThe Netherlands
  4. 4.Division of Imaging Sciences and Medical Engineering, King’s College London, The Rayne InstituteSt. Thomas’ HospitalLondonUK

Personalised recommendations