Current Cardiovascular Imaging Reports

, Volume 6, Issue 1, pp 61–68

Molecular MRI of the Cardiovascular System in the Post-NSF Era

Molecular Imaging (ZA Fayad, Section Editor)


Two new molecular MR imaging agents have been approved for clinical use within the last 3 years, and a third agent has completed phase 2 clinical trials. A wealth of preclinical data is also emerging on the general safety of many molecular MR imaging agents. In addition, since the guidelines to avoid nephrogenic systemic fibrosis (NSF) were adopted, at most institutions no new cases of NSF have been reported. Nevertheless, in the post-NSF environment, both those developing and those using molecular MR imaging agents need to be increasingly aware of safety issues. This awareness should begin with the design of the agent and, even in early preclinical studies, the demonstration of both safety and efficacy should be given high priority. In this review we discuss some of the issues relevant to the design of safe molecular MR imaging agents, and highlight the excellent safety profile of those agents that have been used clinically to date.


Molecular imaging MRI Cardiovascular Safety Gadolinium Iron oxide 


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Nahrendorf M, Sosnovik DE, French BA, et al. Multimodality cardiovascular molecular imaging, part II. Circ Cardiovasc Imaging. 2009;2(1):56–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Sosnovik DE, Nahrendorf M, Weissleder R. Molecular magnetic resonance imaging in cardiovascular medicine. Circulation. 2007;115(15):2076–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Sosnovik DE, Schellenberger EA, Nahrendorf M, et al. Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med. 2005;54(3):718–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Briley-Saebo KC, Shaw PX, Mulder WJ, et al. Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation. 2008;117(25):3206–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Helm PA, Caravan P, French BA, et al. Postinfarction myocardial scarring in mice: molecular MR imaging with use of a collagen-targeting contrast agent. Radiology. 2008;247(3):788–96.PubMedCrossRefGoogle Scholar
  6. 6.
    • Huang S, Chen HH, Yuan H, et al. Molecular MRI of acute necrosis with a novel DNA-binding gadolinium chelate: kinetics of cell death and clearance in infarcted myocardium. Circ Cardiovasc Imaging. 2011;4(6):729–37. Detailed biodistribution data showing that a DNA-targeted Gd chelate is well cleared.PubMedCrossRefGoogle Scholar
  7. 7.
    Lipinski MJ, Frias JC, Amirbekian V, et al. Macrophage-specific lipid-based nanoparticles improve cardiac magnetic resonance detection and characterization of human atherosclerosis. JACC Cardiovasc Imaging. 2009;2(5):637–47.PubMedCrossRefGoogle Scholar
  8. 8.
    Naresh NK, Xu Y, Klibanov AL, et al. Monocyte and/or macrophage infiltration of heart after myocardial infarction: MR imaging by using T1-shortening liposomes. Radiology. 2012;264(2):428–35.PubMedCrossRefGoogle Scholar
  9. 9.
    Spuentrup E, Botnar RM, Wiethoff AJ, et al. MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. Eur Radiol. 2008;18(9):1995–2005.PubMedCrossRefGoogle Scholar
  10. 10.
    Tang TY, Howarth SP, Miller SR, et al. The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol. 2009;53(22):2039–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Vymazal J, Spuentrup E, Cardenas-Molina G, et al. Thrombus imaging with fibrin-specific gadolinium-based MR contrast agent EP-2104R: results of a phase II clinical study of feasibility. Invest Radiol. 2009;44(11):697–704.PubMedCrossRefGoogle Scholar
  12. 12.
    Reiter T, Ritter O, Prince MR, et al. Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:31.PubMedCrossRefGoogle Scholar
  13. 13.
    • Wang Y, Alkasab TK, Narin O, et al. Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology. 2011;260(1):105–11. Important study showing that by following broadly accepted guidelines the occurrence of NSF can be completely eliminated.PubMedCrossRefGoogle Scholar
  14. 14.
    Kolodziej AF, Nair SA, Graham P, et al. Fibrin specific peptides derived by phage display: characterization of peptides and conjugates for imaging. Bioconjug Chem. 2012;23(3):548–56.PubMedCrossRefGoogle Scholar
  15. 15.
    • Makowski MR, Wiethoff AJ, Blume U, et al. Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med. 2011;17(3):383–8. Detailed biodistribution data showing that an elastin-targeted Gd chelate is well cleared.PubMedCrossRefGoogle Scholar
  16. 16.
    Amirbekian V, Aguinaldo JG, Amirbekian S, et al. Atherosclerosis and matrix metalloproteinases: experimental molecular MR imaging in vivo. Radiology. 2009;251(2):429–38.PubMedCrossRefGoogle Scholar
  17. 17.
    • Uppal R, Catana C, Ay I, et al. Bimodal thrombus imaging: simultaneous PET/MR imaging with a fibrin-targeted dual PET/MR probe – feasibility study in rat model. Radiology. 2011;258(3):812–20. Properties and kinetics of a dual MR/PET fibrin binding probe are described.PubMedCrossRefGoogle Scholar
  18. 18.
    Caravan P, Cloutier NJ, Greenfield MT, et al. The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc. 2002;124(12):3152–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Caravan P, Comuzzi C, Crooks W, et al. Thermodynamic stability and kinetic inertness of MS-325, a new blood pool agent for magnetic resonance imaging. Inorg Chem. 2001;40(9):2170–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Eldredge HB, Spiller M, Chasse JM, et al. Species dependence on plasma protein binding and relaxivity of the gadolinium-based MRI contrast agent MS-325. Invest Radiol. 2006;41(3):229–43.PubMedCrossRefGoogle Scholar
  21. 21.
    Nahrendorf M, Sosnovik D, Chen JW, et al. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation. 2008;117(9):1153–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Rodriguez E, Nilges M, Weissleder R, Chen JW. Activatable magnetic resonance imaging agents for myeloperoxidase sensing: mechanism of activation, stability, and toxicity. J Am Chem Soc. 2010;132(1):168–77.PubMedCrossRefGoogle Scholar
  23. 23.
    Sosnovik DE, Nahrendorf M, Weissleder R. Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol. 2008;103(2):122–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Sosnovik DE, Nahrendorf M, Deliolanis N, et al. Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation. 2007;115(11):1384–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Weissleder R, Stark DD, Engelstad BL, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol. 1989;152(1):167–73.PubMedGoogle Scholar
  26. 26.
    • Richards JM, Shaw CA, Lang NN, et al. In vivo mononuclear cell tracking using superparamagnetic particles of iron oxide: feasibility and safety in humans. Circ Cardiovasc Imaging. 2012;5(4):509–17. Clinical study involving the injection of monocytes labeled with iron oxide nanoparticles.PubMedCrossRefGoogle Scholar
  27. 27.
    Arbab AS, Yocum GT, Rad AM, et al. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed. 2005;18(8):553–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Yocum GT, Wilson LB, Ashari P, et al. Effect of human stem cells labeled with ferumoxides-poly-L-lysine on hematologic and biochemical measurements in rats. Radiology. 2005;235(2):547–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348(25):2491–9.PubMedCrossRefGoogle Scholar
  30. 30.
    • Alam SR, Shah AS, Richards J, et al. Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: early clinical experience. Circ Cardiovasc Imaging. 2012;5(5):559–65. Clinical study in which ferumoxytol was used to image myocardial inflammation in patients with STEMI.PubMedCrossRefGoogle Scholar
  31. 31.
    McAteer MA, Schneider JE, Ali ZA, et al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol. 2008;28(1):77–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Nahrendorf M, Jaffer FA, Kelly KA, et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation. 2006;114(14):1504–11.PubMedCrossRefGoogle Scholar
  33. 33.
    Chen S, Alcantara D, Josephson L. A magnetofluorescent nanoparticle for ex-vivo cell labeling by covalently linking the drugs protamine and Feraheme. J Nanosci Nanotechnol. 2011;11(4):3058–64.PubMedCrossRefGoogle Scholar
  34. 34.
    Wagner M, Wagner S, Schnorr J, et al. Coronary MR angiography using citrate-coated very small superparamagnetic iron oxide particles as blood-pool contrast agent: initial experience in humans. J Magn Reson Imaging. 2011;34(4):816–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Partlow KC, Chen J, Brant JA, et al. 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J. 2007;21(8):1647–54.PubMedCrossRefGoogle Scholar
  36. 36.
    Flogel U, Ding Z, Hardung H, et al. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation. 2008;118(2):140–8.PubMedCrossRefGoogle Scholar
  37. 37.
    • Lobatto ME, Fayad ZA, Silvera S, et al. Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis. Mol Pharm. 2010;7(6):2020–9. Study demonstrating the antiinflammatory effects of steroid-loaded liposomes.PubMedCrossRefGoogle Scholar
  38. 38.
    Winter PM, Neubauer AM, Caruthers SD, et al. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26(9):2103–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Flacke S, Fischer S, Scott MJ, et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation. 2001;104(11):1280–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Unger E, Cardenas D, Zerella A, et al. Biodistribution and clearance of liposomal gadolinium-DTPA. Invest Radiol. 1990;25(6):638–44.PubMedCrossRefGoogle Scholar
  41. 41.
    Gianella A, Jarzyna PA, Mani V, et al. Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer. ACS Nano. 2011;5(6):4422–33.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang H, Zhang L, Myerson J, et al. Quantifying the evolution of vascular barrier disruption in advanced atherosclerosis with semipermeant nanoparticle contrast agents. PLoS One. 2011;6(10):e26385.PubMedCrossRefGoogle Scholar
  43. 43.
    Flaim SF. Pharmacokinetics and side effects of perfluorocarbon-based blood substitutes. Artif Cells Blood Substit Immobil Biotechnol. 1994;22(4):1043–54.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen HH, Feng Y, Zhang M, et al. Protective effect of the apoptosis-sensing nanoparticle AnxCLIO-Cy5.5. Nanomedicine. 2012;8(3):291–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Martinos Center for Biomedical ImagingMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of CardiologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations