Current Cardiovascular Imaging Reports

, Volume 6, Issue 1, pp 34–44 | Cite as

Cardiac Magnetic Resonance Imaging: Recent Advances and New Insights in Cardiovascular Disease

Molecular Imaging (ZA Fayad, Section Editor)
  • 172 Downloads

Abstract

Cardiac magnetic resonance (CMR) is increasingly employed as a diagnostic test in the evaluation of cardiovascular disease. This article provides an update on recent developments in diagnostic and prognostic applications of CMR in clinical practice. Specifically, advances in the evaluation of myocardial diseases of both ischemic and nonischemic etiology are emphasized. New data on less frequent indications such as constrictive pericarditis, valvular heart disease, or pulmonary hypertension are also summarized. Finally, the emerging roles of novel techniques, like myocardial T1-mapping or molecular imaging, are discussed.

Keywords

Imaging Magnetic resonance Ischemic heart disease Nonischemic cardiomyopathy Hypertrophic cardiomyopathy Arrhytmogenic right ventricular dysplasia Cardiac iron overload Constrictive pericarditis T1 mapping Molecular MRI Spectroscopy 

Notes

Acknowledgments

E. Pozo has a grant for a fellowship in advanced cardiovascular imaging from “Fundación Alfonso Martin Escudero”, Madrid, Spain.

Disclosure

No potential conflicts of interest relevant to this article were reported.

References

Papers of particular interest, published recently, have been highlighted as follows: • Of importance •• Of major importance

  1. 1.
    Hendel RC, Patel MR, Kramer CM, Poon M, Hendel RC, Carr JC, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006;48:1475–97.PubMedCrossRefGoogle Scholar
  2. 2.
    • Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012;59:1719–28. Meta-analysis that showed a higher diagnostic accuracy of stress CMR and PET compared with SPECT.PubMedCrossRefGoogle Scholar
  3. 3.
    •• Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379:453–60. This large multicenter prospective study confirmed the superiority of adenosine stress CMR over SPECT to detect significant coronary stenoses.PubMedCrossRefGoogle Scholar
  4. 4.
    Miller CD, Hwang W, Case D, Hoekstra JW, Lefebvre C, Blumstein H, et al. Stress CMR imaging observation unit in the emergency department reduces 1-year medical care costs in patients with acute chest pain: a randomized study for comparison with inpatient care. JACC Cardiovasc Imaging. 2011;4:862–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Jahnke C, Nagel E, Gebker R, Kokocinski T, Kelle S, Manka R, et al. Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation. 2007;115:1769–76.PubMedCrossRefGoogle Scholar
  6. 6.
    Korosoglou G, Elhmidi Y, Steen H, Schellberg D, Riedle N, Ahrens J, et al. Prognostic value of high-dose dobutamine stress magnetic resonance imaging in 1493 consecutive patients: assessment of myocardial wall motion and perfusion. J Am Coll Cardiol. 2010;56:1225–34.PubMedCrossRefGoogle Scholar
  7. 7.
    Bodi V, Husser O, Sanchis J, Nunez J, Monmeneu JV, Lopez-Lereu MP, et al. Prognostic implications of dipyridamole cardiac MR imaging: a prospective multicenter registry. Radiology. 2012;262:91–100.PubMedCrossRefGoogle Scholar
  8. 8.
    Fuernau G, Eitel I, Franke V, Hildebrandt L, Meissner J, de Waha S, et al. Myocardium at risk in ST-segment elevation myocardial infarction comparison of T2-weighted edema imaging with the MR-assessed endocardial surface area and validation against angiographic scoring. JACC Cardiovasc Imaging. 2011;4:967–76.PubMedCrossRefGoogle Scholar
  9. 9.
    Eitel I, Desch S, Fuernau G, Hildebrand L, Gutberlet M, Schuler G, et al. Prognostic significance and determinants of myocardial salvage assessed by cardiovascular magnetic resonance in acute reperfused myocardial infarction. J Am Coll Cardiol. 2010;55:2470–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Eitel I, Desch S, de Waha S, Fuernau G, Gutberlet M, Schuler G, et al. Long-term prognostic value of myocardial salvage assessed by cardiovascular magnetic resonance in acute reperfused myocardial infarction. Heart. 2011;97:2038–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364:1617–25.PubMedCrossRefGoogle Scholar
  12. 12.
    • Gerber BL, Rousseau MF, Ahn SA, le Polain de Waroux JB, Pouleur AC, Phlips T, et al. Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction: impact of revascularization therapy. J Am Coll Cardiol. 2012;59:825–35. Determination of myocardial viability with ischemic heart disease has an outstanding impact in prognosis and can guide revascularization therapy.PubMedCrossRefGoogle Scholar
  13. 13.
    Epstein AE, DiMarco JP, Ellenbogen KA, Estes NA, 3rd, Freedman RA, Gettes LS, et al. ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices): developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. Circulation. 2008;117:e350–408.PubMedCrossRefGoogle Scholar
  14. 14.
    Roes SD, Borleffs CJ, van der Geest RJ, Westenberg JJ, Marsan NA, Kaandorp TA, et al. Infarct tissue heterogeneity assessed with contrast-enhanced MRI predicts spontaneous ventricular arrhythmia in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator. Circ Cardiovasc Imaging. 2009;2:183–90.PubMedCrossRefGoogle Scholar
  15. 15.
    Schmidt A, Azevedo CF, Cheng A, Gupta SN, Bluemke DA, Foo TK, et al. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation. 2007;115:2006–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Yan AT, Shayne AJ, Brown KA, Gupta SN, Chan CW, Luu TM, et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation. 2006;114:32–9.PubMedCrossRefGoogle Scholar
  17. 17.
    de Haan S, Meijers TA, Knaapen P, Beek AM, van Rossum AC, Allaart CP. Scar size and characteristics assessed by CMR predict ventricular arrhythmias in ischaemic cardiomyopathy: comparison of previously validated models. Heart. 2011;97:1951–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Boye P, Abdel-Aty H, Zacharzowsky U, Bohl S, Schwenke C, van der Geest RJ, et al. Prediction of life-threatening arrhythmic events in patients with chronic myocardial infarction by contrast-enhanced CMR. JACC Cardiovasc Imaging. 2011;4:871–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Perez-David E, Arenal A, Rubio-Guivernau JL, del Castillo R, Atea L, Arbelo E, et al. Noninvasive identification of ventricular tachycardia-related conducting channels using contrast-enhanced magnetic resonance imaging in patients with chronic myocardial infarction: comparison of signal intensity scar mapping and endocardial voltage mapping. J Am Coll Cardiol. 2011;57:184–94.PubMedCrossRefGoogle Scholar
  20. 20.
    Reynolds HR, Srichai MB, Iqbal SN, Slater JN, Mancini GB, Feit F, et al. Mechanisms of myocardial infarction in women without angiographically obstructive coronary artery disease. Circulation. 2011;124:1414–25.PubMedCrossRefGoogle Scholar
  21. 21.
    • Monney PA, Sekhri N, Burchell T, Knight C, Davies C, Deaner A, et al. Acute myocarditis presenting as acute coronary syndrome: role of early cardiac magnetic resonance in its diagnosis. Heart. 2011;97:1312–8. The diagnostic performance of CMR for myocarditis is significantly higher in the acute phase.PubMedCrossRefGoogle Scholar
  22. 22.
    Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, Carbone I, Muellerleile K, Aldrovandi A, et al. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA. 2011;306:277–86.PubMedCrossRefGoogle Scholar
  23. 23.
    Jansen CH, Perera D, Makowski MR, Wiethoff AJ, Phinikaridou A, Razavi RM, et al. Detection of intracoronary thrombus by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 2011;124:416–24.PubMedCrossRefGoogle Scholar
  24. 24.
    •• Assomull RG, Shakespeare C, Kalra PR, Lloyd G, Gulati A, Strange J, et al. Role of cardiovascular magnetic resonance as a gatekeeper to invasive coronary angiography in patients presenting with heart failure of unknown etiology. Circulation. 2011;124:1351–60. Rule out of significant coronary artery disease with CMR in dilated cardiomyopathy is cost-effective without differences in diagnosis accuracy.PubMedCrossRefGoogle Scholar
  25. 25.
    O’Donnell DH, Abbara S, Chaithiraphan V, Yared K, Killeen RP, Martos R, et al. Cardiac MR Imaging of nonischemic cardiomyopathies: imaging protocols and spectra of appearances. Radiology. 2012;262:403–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Leong DP, Chakrabarty A, Shipp N, Molaee P, Madsen PL, Joerg L, et al. Effects of myocardial fibrosis and ventricular dyssynchrony on response to therapy in new-presentation idiopathic dilated cardiomyopathy: insights from cardiovascular magnetic resonance and echocardiography. Eur Heart J. 2012;33:640–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Klem I, Shah DJ, White RD, Pennell DJ, van Rossum AC, Regenfus M, et al. Prognostic value of routine cardiac magnetic resonance assessment of left ventricular ejection fraction and myocardial damage: an international, multicenter study. Circ Cardiovasc Imaging. 2011;4:610–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Cheong BY, Muthupillai R, Wilson JM, Sung A, Huber S, Amin S, et al. Prognostic significance of delayed-enhancement magnetic resonance imaging: survival of 857 patients with and without left ventricular dysfunction. Circulation. 2009;120:2069–76.PubMedCrossRefGoogle Scholar
  29. 29.
    •• Klem I, Weinsaft JW, Bahnson TD, Hegland D, Kim HW, Hayes B, et al. Assessment of myocardial scarring improves risk stratification in patients evaluated for cardiac defibrillator implantation. J Am Coll Cardiol. 2012;60:408–20. Presence of LGE scar mass >5 % has a higher prognostic value for malignant arrhythmias and death than LVEF in dilated cardiomyopathy.PubMedCrossRefGoogle Scholar
  30. 30.
    Gao P, Yee R, Gula L, Krahn AD, Skanes A, Leong-Sit P, et al. Prediction of arrhythmic events in ischemic and dilated cardiomyopathy patients referred for implantable cardiac defibrillator: evaluation of multiple scar quantification measures for late gadolinium enhancement magnetic resonance imaging. Circ Cardiovasc Imaging. 2011;5:448–56.CrossRefGoogle Scholar
  31. 31.
    Iles L, Pfluger H, Lefkovits L, Butler MJ, Kistler PM, Kaye DM, et al. Myocardial fibrosis predicts appropriate device therapy in patients with implantable cardioverter-defibrillators for primary prevention of sudden cardiac death. J Am Coll Cardiol. 2011;57:821–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Lehrke S, Lossnitzer D, Schob M, Steen H, Merten C, Kemmling H, et al. Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy. Heart. 2011;97:727–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Maron MS. Clinical utility of cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2012;14:13.PubMedCrossRefGoogle Scholar
  34. 34.
    Bruder O, Wagner A, Jensen CJ, Schneider S, Ong P, Kispert EM, et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56:875–87.PubMedCrossRefGoogle Scholar
  35. 35.
    Maron MS, Appelbaum E, Harrigan CJ, Buros J, Gibson CM, Hanna C, et al. Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circ Heart Fail. 2008;1:184–91.PubMedCrossRefGoogle Scholar
  36. 36.
    O’Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56:867–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Rubinshtein R, Glockner JF, Ommen SR, Araoz PA, Ackerman MJ, Sorajja P, et al. Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail. 2010;3:51–8.PubMedCrossRefGoogle Scholar
  38. 38.
    • Green JJ, Berger JS, Kramer CM, Salerno M. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc Imaging. 2012;5:370–7. Presence of LGE in hypertrophic cardiomyopathy was an independent predictor of heart failure and death, but did not reach statistical significance for sudden cardiac death.PubMedCrossRefGoogle Scholar
  39. 39.
    Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. ACCF/AHA Guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58:e212–60.PubMedCrossRefGoogle Scholar
  40. 40.
    Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121:1533–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Vermes E, Strohm O, Otmani A, Childs H, Duff H, Friedrich MG. Impact of the revision of arrhythmogenic right ventricular cardiomyopathy/dysplasia task force criteria on its prevalence by CMR criteria. JACC Cardiovasc Imaging. 2011;4:282–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Quarta G, Muir A, Pantazis A, Syrris P, Gehmlich K, Garcia-Pavia P, et al. Familial evaluation in arrhythmogenic right ventricular cardiomyopathy: impact of genetics and revised task force criteria. Circulation. 2011;123:2701–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al. Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J Am Coll Cardiol. 2009;53:1475–87.PubMedCrossRefGoogle Scholar
  44. 44.
    Lurz P, Eitel I, Adam J, Steiner J, Grothoff M, Desch S, et al. Diagnostic performance of CMR imaging compared with EMB in patients with suspected myocarditis. JACC Cardiovasc Imaging. 2012;5:513–24.PubMedCrossRefGoogle Scholar
  45. 45.
    Grun S, Schumm J, Greulich S, Wagner A, Schneider S, Bruder O, et al. Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol. 2012;59:1604–15.PubMedCrossRefGoogle Scholar
  46. 46.
    Kremastinos DT, Farmakis D. Iron overload cardiomyopathy in clinical practice. Circulation. 2011;124:2253–63.PubMedCrossRefGoogle Scholar
  47. 47.
    •• Kirk P, Roughton M, Porter JB, Walker JM, Tanner MA, Patel J, et al. Cardiac T2* magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation. 2009;120:1961–8. Shortening in T2* relaxation was the most powerful predictor of heart failure and cardiac arrhythmias in patients with thalassemia major.PubMedCrossRefGoogle Scholar
  48. 48.
    Carpenter JP, He T, Kirk P, Roughton M, Anderson LJ, de Noronha SV, et al. On T2* magnetic resonance and cardiac iron. Circulation. 2011;123:1519–28.PubMedCrossRefGoogle Scholar
  49. 49.
    Turkbey EB, Backlund JY, Genuth S, Jain A, Miao C, Cleary PA, et al. Myocardial structure, function, and scar in patients with type 1 diabetes mellitus. Circulation. 2011;124:1737–46.PubMedCrossRefGoogle Scholar
  50. 50.
    Niemann M, Herrmann S, Hu K, Breunig F, Strotmann J, Beer M, et al. Differences in Fabry cardiomyopathy between female and male patients: consequences for diagnostic assessment. JACC Cardiovasc Imaging. 2011;4:592–601.PubMedCrossRefGoogle Scholar
  51. 51.
    Weidemann F, Rummey C, Bijnens B, Stork S, Jasaityte R, Dhooge J, et al. The heart in Friedreich ataxia: definition of cardiomyopathy, disease severity, and correlation with neurological symptoms. Circulation. 2012;125:1626–34.PubMedCrossRefGoogle Scholar
  52. 52.
    Verhaert D, Richards K, Rafael-Fortney JA, Raman SV. Cardiac involvement in patients with muscular dystrophies: magnetic resonance imaging phenotype and genotypic considerations. Circ Cardiovasc Imaging. 2011;4:67–76.PubMedCrossRefGoogle Scholar
  53. 53.
    Chaowu Y, Li L, Shihua Z. Histopathological features of delayed enhancement cardiovascular magnetic resonance in isolated left ventricular noncompaction. J Am Coll Cardiol. 2011;58:311–2.PubMedCrossRefGoogle Scholar
  54. 54.
    Salemi VM, Rochitte CE, Shiozaki AA, Andrade JM, Parga JR, de Avila LF, et al. Late gadolinium enhancement magnetic resonance imaging in the diagnosis and prognosis of endomyocardial fibrosis patients. Circ Cardiovasc Imaging. 2011;4:304–11.PubMedCrossRefGoogle Scholar
  55. 55.
    Youssef G, Beanlands RS, Birnie DH, Nery PB. Cardiac sarcoidosis: applications of imaging in diagnosis and directing treatment. Heart. 2011;97:2078–87.PubMedCrossRefGoogle Scholar
  56. 56.
    Miller CA, Dormand H, Clark D, Jones M, Bishop P, Schmitt M. Comprehensive characterization of constrictive pericarditis using multiparametric CMR. JACC Cardiovasc Imaging. 2011;4:917–20.PubMedCrossRefGoogle Scholar
  57. 57.
    Thavendiranathan P, Verhaert D, Walls MC, Bender JA, Rajagopalan S, Chung YC, et al. Simultaneous right and left heart real-time, free-breathing CMR flow quantification identifies constrictive physiology. JACC Cardiovasc Imaging. 2012;5:15–24.PubMedCrossRefGoogle Scholar
  58. 58.
    Mirelis JG, Garcia-Alvarez A, Fernandez-Friera L, Sawit S, Hinojar R, Fuster V, et al. Respiratory ventricular area changes measured with real-time cardiac magnetic resonance: a new, accurate, and reproducible approach for the diagnosis of pericardial constriction. Int J Cardiol. 2012 (in press).Google Scholar
  59. 59.
    Zurick AO, Bolen MA, Kwon DH, Tan CD, Popovic ZB, Rajeswaran J, et al. Pericardial delayed hyperenhancement with CMR imaging in patients with constrictive pericarditis undergoing surgical pericardiectomy: a case series with histopathological correlation. JACC Cardiovasc Imaging. 2011;4:1180–91.PubMedCrossRefGoogle Scholar
  60. 60.
    Feng D, Glockner J, Kim K, Martinez M, Syed IS, Araoz P, et al. Cardiac magnetic resonance imaging pericardial late gadolinium enhancement and elevated inflammatory markers can predict the reversibility of constrictive pericarditis after antiinflammatory medical therapy: a pilot study. Circulation. 2011;124:1830–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Dweck MR, Joshi S, Murigu T, Alpendurada F, Jabbour A, Melina G, et al. Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J Am Coll Cardiol. 2011;58:1271–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Herrmann S, Stork S, Niemann M, Lange V, Strotmann JM, Frantz S, et al. Low-gradient aortic valve stenosis myocardial fibrosis and its influence on function and outcome. J Am Coll Cardiol. 2011;58:402–12.PubMedCrossRefGoogle Scholar
  63. 63.
    Freed BH, Gomberg-Maitland M, Chandra S, Mor-Avi V, Rich S, Archer SL, et al. Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. J Cardiovasc Magn Reson. 2012;14:11.PubMedCrossRefGoogle Scholar
  64. 64.
    Fernandez-Friera L, Garcia-Alvarez A, Guzman G, Bagheriannejad-Esfahani F, Malick W, Nair A, et al. Apical right ventricular dysfunction in patients with pulmonary hypertension demonstrated with magnetic resonance. Heart. 2011;97:1250–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Garcia-Alvarez A, Fernandez-Friera L, Mirelis JG, Sawit S, Nair A, Kallman J, et al. Noninvasive estimation of pulmonary vascular resistance with cardiac magnetic resonance. Eur Heart J. 2011;32:2438–45.PubMedCrossRefGoogle Scholar
  66. 66.
    Sanz J, Garcia-Alvarez A, Fernandez-Friera L, Nair A, Mirelis JG, Sawit ST, et al. Right ventriculo-arterial coupling in pulmonary hypertension: a magnetic resonance study. Heart. 2012;98:238–43.PubMedCrossRefGoogle Scholar
  67. 67.
    White SK, Sado DM, Flett AS, Moon JC. Characterizing the myocardial interstitial space: the clinical relevance of noninvasive imaging. Heart. 2012;98:773–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2011;122:138–44.CrossRefGoogle Scholar
  69. 69.
    Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57:891–903.PubMedCrossRefGoogle Scholar
  70. 70.
    Ng AC, Auger D, Delgado V, van Elderen SG, Bertini M, Siebelink HM, et al. Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T(1) mapping and subclinical myocardial dysfunction in diabetic patients: a pilot study. Circ Cardiovasc Imaging. 2012;5:51–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Jellis C, Wright J, Kennedy D, Sacre J, Jenkins C, Haluska B, et al. Association of imaging markers of myocardial fibrosis with metabolic and functional disturbances in early diabetic cardiomyopathy. Circ Cardiovasc Imaging. 2011;4:693–702.PubMedCrossRefGoogle Scholar
  72. 72.
    Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, Aneizi AA, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation. 2012;126:1206–16.PubMedCrossRefGoogle Scholar
  73. 73.
    Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59:153–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Moon H, Park HE, Kang J, Lee H, Cheong C, Lim YT, et al. Noninvasive assessment of myocardial inflammation by cardiovascular magnetic resonance in a rat model of experimental autoimmune myocarditis. Circulation. 2012;125:2603–12.PubMedCrossRefGoogle Scholar
  75. 75.
    Dash R, Chung J, Chan T, Yamada M, Barral J, Nishimura D, et al. A molecular MRI probe to detect treatment of cardiac apoptosis in vivo. Magn Reson Med. 2011;66:1152–62.PubMedCrossRefGoogle Scholar
  76. 76.
    Ng AC, Delgado V, Bertini M, van der Meer RW, Rijzewijk LJ, Hooi Ewe S, et al. Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation. 2010;122:2538–44.PubMedCrossRefGoogle Scholar
  77. 77.
    Rider OJ, Francis JM, Ali MK, Holloway C, Pegg T, Robson MD, et al. Effects of catecholamine stress on diastolic function and myocardial energetics in obesity. Circulation. 2012;125:1511–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Hor KN, Gottliebson WM, Carson C, Wash E, Cnota J, Fleck R, et al. Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging. 2010;3:144–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.The Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josee and Henry, R. Kravis Center for Cardiovascular HealthMount Sinai School of MedicineNew YorkUSA
  2. 2.Cardiovascular InstituteMount Sinai HospitalNew YorkUSA

Personalised recommendations