Current Cardiovascular Imaging Reports

, Volume 5, Issue 5, pp 360–366

Current and Future Post-Processing and Reconstruction Methods for Improved Image Quality in Coronary Computed Tomographic Angiography

Cardiac Computed Tomography (TC Villines and S Achenbach, Section Editors)


While coronary computed tomographic angiography (CCTA) has high diagnostic performance to identify and exclude obstructive coronary artery disease, it is susceptible to false-positive results and non-interpretable studies, and requires the use of ionizing radiation. New methods of image reconstruction and post-processing have the potential to significantly improve image quality, reduce the number of non-interpretable studies, and improve the diagnostic accuracy of CCTA. In this manuscript, we will review current and novel technologies for image reconstruction and post-processing that may improve the image quality of CCTA.


Iterative reconstruction Cardiac computed tomography Coronary artery disease Image quality 


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter accuracy (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol. 2008;52:1724–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324–36.PubMedCrossRefGoogle Scholar
  3. 3.
    Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52:2135–44.PubMedCrossRefGoogle Scholar
  4. 4.
    Redberg RF. Computed tomographic angiography: more than just a pretty picture? J Am Coll Cardiol. 2007;49:1827–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Raff GL, Abidov A, Achenbach S, Berman DS, Boxt LM, Budoff MJ, et al. SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr. 2009;3:122–36.PubMedCrossRefGoogle Scholar
  6. 6.
    Einstein AJ. Radiation protection of patients undergoing cardiac computed tomographic angiography. JAMA. 2009;301:545–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Raff GL, Chinnaiyan KM, Share DA, Goraya TY, Kazerooni EA, Moscucci M, et al. Radiation dose from cardiac computed tomography before and after implementation of radiation dose-reduction techniques. JAMA. 2009;301:2340–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Hausleiter J, Meyer T, Hadamitzky M, Huber E, Zankl M, Martinoff S, et al. Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation. 2006;113:1305–10.PubMedCrossRefGoogle Scholar
  9. 9.
    Hausleiter J, Meyer T, Hermann F, Hadamitzky M, Krebs M, Gerber TC, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301:500–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Nelson RC, Feuerlein S, Boll DT. New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages? J Cardiovasc Comput Tomogr. 2011;5:286–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.PubMedCrossRefGoogle Scholar
  12. 12.
    •• Park EA, Lee W, Kim KW, Kim KG, Thomas A, Chung JW, et al. Iterative reconstruction of dual-source coronary ct angiography: assessment of image quality and radiation dose. Int J Cardiovasc Imaging. 2011; doi:10.1007/s10554-011-0004-2. This paper evaluated the effect of iterative reconstruction on image quality and radiation dose.
  13. 13.
    •• Bittencourt MS, Schmidt B, Seltmann M, Muschiol G, Ropers D, Daniel WG, et al. Iterative reconstruction in image space (iris) in cardiac computed tomography: initial experience. Int J Cardiovasc Imaging. 2011;27:1081–7. This study examined the effect of iterative reconstruction on image quality and the number of interpretable segments.PubMedCrossRefGoogle Scholar
  14. 14.
    •• Renker M, Nance Jr JW, Schoepf UJ, O'Brien TX, Zwerner PL, Meyer M, et al. Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology. 2011;260:390–9. This study evaluated the effect of iterative reconstruction on image noise and calcium blooming artifact.PubMedCrossRefGoogle Scholar
  15. 15.
    Min JK, Swaminathan RV, Vass M, Gallagher S, Weinsaft JW. High-definition multidetector computed tomography for evaluation of coronary artery stents: comparison to standard-definition 64-detector row computed tomography. J Cardiovasc Comput Tomogr. 2009;3:246–51.PubMedCrossRefGoogle Scholar
  16. 16.
    •• Leipsic J, Labounty TM, Heilbron B, Min JK, Mancini GB, Lin FY, et al. Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary ct angiography. AJR Am J Roentgenol. 2010;195:649–54. This manuscript evaluated the effect of iterative reconstruction on image noise, signal, and image quality.PubMedCrossRefGoogle Scholar
  17. 17.
    Leipsic J, Labounty TM, Heilbron B, Min JK, Mancini GB, Lin FY, et al. Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR Am J Roentgenol. 2010;195:655–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Singh S, Kalra MK, Shenoy-Bhangle AS, Saini A, Gervais DA, Westra SJ, et al. Radiation dose reduction with hybrid iterative reconstruction for pediatric CT. Radiology. 2012;263:537–46.PubMedCrossRefGoogle Scholar
  19. 19.
    Sato J, Akahane M, Inano S, Terasaki M, Akai H, Katsura M, et al. Effect of radiation dose and adaptive statistical iterative reconstruction on image quality of pulmonary computed tomography. Jpn J Radiol. 2012;30:146–53.PubMedCrossRefGoogle Scholar
  20. 20.
    Rapalino O, Kamalian S, Payabvash S, Souza LC, Zhang D, Mukta J, et al. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction. AJNR Am J Neuroradiol. 2012;33:609–15.PubMedCrossRefGoogle Scholar
  21. 21.
    Noel PB, Fingerle AA, Renger B, Munzel D, Rummeny EJ, Dobritz M. Initial performance characterization of a clinical noise-suppressing reconstruction algorithm for MDCT. AJR Am J Roentgenol. 2011;197:1404–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Utsunomiya D, Weigold WG, Weissman G, Taylor AJ. Effect of hybrid iterative reconstruction technique on quantitative and qualitative image analysis at 256-slice prospective gating cardiac CT. Eur Radiol. 2011;22:1287–94Google Scholar
  23. 23.
    Moscariello A, Takx RA, Schoepf UJ, Renker M, Zwerner PL, O'Brien TX, et al. Coronary CT angiography: image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative image reconstruction technique-comparison with traditional filtered back projection. Eur Radiol. 2011;21:2130–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Gervaise A, Osemont B, Lecocq S, Noel A, Micard E, Felblinger J, et al. CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol. 2012;22:295–301.PubMedCrossRefGoogle Scholar
  25. 25.
    Yu Z, Thibault JB, Bouman CA, Sauer KD, Hsieh J. Fast model-based X-ray CT reconstruction using spatially nonhomogeneous icd optimization. IEEE Trans Image Process. 2011;20:161–75.PubMedCrossRefGoogle Scholar
  26. 26.
    Thibault JB, Sauer KD, Bouman CA, Hsieh J. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys. 2007;34:4526–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Scheffel H, Stolzmann P, Schlett CL, Engel LC, Major GP, Karolyi M, et al. Coronary artery plaques: cardiac CT with model-based and adaptive-statistical iterative reconstruction technique. Eur J Radiol. 2012;81:e363–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Suzuki S, Machida H, Tanaka I, Ueno E. Measurement of vascular wall attenuation: comparison of ct angiography using model-based iterative reconstruction with standard filtered back-projection algorithm CT in vitro. Eur J Radiol. 2012; doi:10.1016/j.ejrad.2012.02.009
  29. 29.
    Cohen A, Yadava G, Sainath P, Fan J, Madhav P, Hsieh J. How much CT radiation dose can model based iterative reconstruction (Veo) save? A physical evaluation of the image quality using standard phantoms. Med Phys. 2011;38:3798.CrossRefGoogle Scholar
  30. 30.
    Do S, Karl WC, Liang Z, Kalra M, Brady TJ, Pien HH. A decomposition-based CT reconstruction formulation for reducing blooming artifacts. Phys Med Biol. 2011;56:7109–25.PubMedCrossRefGoogle Scholar
  31. 31.
    LaBounty TM, Earls JP, Leipsic J, Heilbron B, Mancini GB, Lin FY, et al. Effect of a standardized quality-improvement protocol on radiation dose in coronary computed tomographic angiography. Am J Cardiol. 2010;106:1663–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Abbara S, Arbab-Zadeh A, Callister TQ, Desai MY, Mamuya W, Thomson L, et al. SCCT guidelines for performance of coronary computed tomographic angiography: a report of the society of cardiovascular computed tomography guidelines committee. J Cardiovasc Comput Tomogr. 2009;3:190–204.PubMedCrossRefGoogle Scholar
  33. 33.
    Achenbach S, Manolopoulos M, Schuhback A, Ropers D, Rixe J, Schneider C, et al. Influence of heart rate and phase of the cardiac cycle on the occurrence of motion artifact in dual-source CT angiography of the coronary arteries. J Cardiovasc Comput Tomogr. 2012;6:91–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Isola AA, Grass M, Niessen WJ. Fully automatic nonrigid registration-based local motion estimation for motion-corrected iterative cardiac ct reconstruction. Med Phys. 2010;37:1093–109.PubMedCrossRefGoogle Scholar
  35. 35.
    Isola AA, Ziegler A, Schafer D, Kohler T, Niessen WJ, Grass M. Motion compensated iterative reconstruction of a region of interest in cardiac cone-beam CT. Comput Med Imaging Graph. 2010;34:149–59.PubMedCrossRefGoogle Scholar
  36. 36.
    Isola AA, Ziegler A, Koehler T, Niessen WJ, Grass M. Motion-compensated iterative cone-beam ct image reconstruction with adapted blobs as basis functions. Phys Med Biol. 2008;53:6777–97.PubMedCrossRefGoogle Scholar
  37. 37.
    Isola AA, Metz CT, Schaap M, Klein S, Grass M, Niessen WJ. Cardiac motion-corrected iterative cone-beam ct reconstruction using a semi-automatic minimum cost path-based coronary centerline extraction. Comput Med Imaging Graph. 2012;36:215–26.PubMedCrossRefGoogle Scholar
  38. 38.
    •• Leipsic J, Labounty T, Hague CJ, Mancini GBJ, O'brien JM, Wood DA, et al. Effect of a novel vendor-specific motion-correction algorithm on image quality and diagnostic accuracy in persons undergoing coronary CT angiography without rate-control medications. J Cardiovasc Comput Tomogr. 2012;[in press]. This paper examined the effect of a motion-correction algorithm on interpretability, image quality, and diagnostic accuracy of CCTA. Google Scholar
  39. 39.
    Maintz D, Seifarth H, Raupach R, Flohr T, Rink M, Sommer T, et al. 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. Eur Radiol. 2006;16:818–26.PubMedCrossRefGoogle Scholar
  40. 40.
    Rodriguez-Granillo GA, Rosales MA, Degrossi E, Rodriguez AE. Signal density of left ventricular myocardial segments and impact of beam hardening artifact: Implications for myocardial perfusion assessment by multidetector CT coronary angiography. Int J Cardiovasc Imaging. 2010;26:345–54.PubMedCrossRefGoogle Scholar
  41. 41.
    Kitagawa K, George RT, Arbab-Zadeh A, Lima JA, Lardo AC. Characterization and correction of beam-hardening artifacts during dynamic volume ct assessment of myocardial perfusion. Radiology. 2010;256:111–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Karlsberg DW, Elad Y, Kass RM, Karlsberg RP. Quadricuspid aortic valve defined by echocardiography and cardiac computed tomography. Clin Med Insights Cardiol. 2012;6:41–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M. Frequency split metal artifact reduction (FSMAR) in computed tomography. Med Phys. 2012;39:1904–16.PubMedCrossRefGoogle Scholar
  44. 44.
    Habets J, Symersky P, Leiner T, de Mol BA, Mali WP, Budde RP. Artifact reduction strategies for prosthetic heart valve CT imaging. Int J Cardiovasc Imaging. 2012; doi:10.1007/s10554-012-0041-5.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Cedars-Sinai Heart Institute and Department of ImagingCedars-Sinai Medical CenterLos AngelesUSA
  2. 2.Departments of Imaging, Department of Biomedical Sciences, Biomedical Imaging Research InstituteCedars-Sinai Medical CenterLos AngelesUSA
  3. 3.Department of Medicine, Department of Biomedical Sciences, Biomedical Imaging Research InstituteCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations