Current Cardiovascular Imaging Reports

, Volume 5, Issue 1, pp 45–52 | Cite as

Molecular Imaging of Macrophages in Atherosclerosis

  • Elena Aikawa
  • Sophie E. P. New
  • Tetsuro Miyazaki
  • Daiju Fukuda
  • Masanori Aikawa
Cardiac Molecular Imaging (F Jaffer, Section Editor)


Macrophages contribute to the initiation, progression, and acute complications of atherosclerosis. Imaging of macrophages during disease progression provides new insights into the mechanisms of atherosclerosis. Advanced imaging techniques may serve as sensitive diagnostic tools for early detection of the disease to identify individuals with subclinical plaques and to prevent devastating complications. Furthermore, molecular imaging may monitor the effects of therapeutic interventions. Development of fully integrated molecular imaging requires dynamic multidisciplinary collaboration.


Macrophages Atherosclerosis Imaging Inflammation Calcification Cardiac molecular imaging 


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.PubMedCrossRefGoogle Scholar
  2. 2.
    Aikawa M, Libby P. The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc Pathol. 2004;13:125–38.PubMedCrossRefGoogle Scholar
  3. 3.
    Aikawa M, Libby P. Atherosclerotic plaque inflammation: the final frontier? Can J Cardiol. 2004;20:631–4.PubMedGoogle Scholar
  4. 4.
    • New SE, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res. 2011;108:1381–91. This is one of the most recent reviews on molecular imaging of cardiovascular inflammation.PubMedCrossRefGoogle Scholar
  5. 5.
    Jaffer FA, Libby P, Weissleder R. Molecular imaging of cardiovascular disease. Circulation. 2007;116:1052–61.PubMedCrossRefGoogle Scholar
  6. 6.
    • Jaffer FA, Libby P, Weissleder R. Optical and multimodality molecular imaging: Insights into atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:1017–24.This comprehensive review provides broad aspects of molecular imaging of atherosclerosis. PubMedCrossRefGoogle Scholar
  7. 7.
    Choudhury RP, Carrelli AL, Stern JD, Chereshnev I, Soccio R, Elmalem VI, Fallon JT, Fisher EA, Reis ED. Effects of simvastatin on plasma lipoproteins and response to arterial injury in wild-type and apolipoprotein-e-deficient mice. J Vasc Res. 2004;41:75–83.PubMedCrossRefGoogle Scholar
  8. 8.
    Aikawa M, Rabkin E, Sugiyama S, Voglic S, Fukumoto Y, Furukawa Y, Shiomi M, Schoen F, Libby P. An HMG-COA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation. 2001;103:276–83.PubMedGoogle Scholar
  9. 9.
    Aikawa M, Voglic SJ, Rabkin E, Shiomi M, Libby P. An HMG-COA reductase inhibitor (cerivastatin) suppresses accumulation of macrophages expressing matrix metalloproteinases and tissue factor in atheroma of whhl rabbits. Circulation. 1998;98:I–47.Google Scholar
  10. 10.
    • Tahara N, Imaizumi T, Virmani R, Narula J. Clinical feasibility of molecular imaging of plaque inflammation in atherosclerosis. J Nucl Med. 2009;50:331–4. This recent review discusses clinical translation of molecular imaging of atherosclerosis, particularly the usefulness of nuclear imaging. PubMedCrossRefGoogle Scholar
  11. 11.
    Sadeghi MM, Glover DK, Lanza GM, Fayad ZA, Johnson LL. Imaging atherosclerosis and vulnerable plaque. J Nucl Med. 2010;51 Suppl 1:51S–65S.PubMedCrossRefGoogle Scholar
  12. 12.
    Ogawa M, Magata Y, Kato T, Hatano K, Ishino S, Mukai T, Shiomi M, Ito K, Saji H. Application of 18f-fdg PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. J Nucl Med. 2006;47:1845–50.PubMedGoogle Scholar
  13. 13.
    Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, Johnstrom P, Davenport AP, Kirkpatrick PJ, Arch BN, Pickard JD, Weissberg PL. Imaging atherosclerotic plaque inflammation with [18f]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Tatsumi M, Nakamoto Y, Traughber B, Marshall LT, Geschwind JF, Wahl RL. Initial experience in small animal tumor imaging with a clinical positron emission tomography/computed tomography scanner using 2-[f-18]fluoro-2-deoxy-d-glucose. Cancer Res. 2003;63:6252–7.PubMedGoogle Scholar
  15. 15.
    Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, Nikolaou K, Reiser MF, Bartenstein P, Hacker M. 18f-fdg PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50:1611–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FK, Weissleder R. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation. 2008;117:379–87.PubMedCrossRefGoogle Scholar
  17. 17.
    Tekabe Y, Li Q, Luma J, Weisenberger D, Sedlar M, Harja E, Narula J, Johnson LL. Noninvasive monitoring the biology of atherosclerotic plaque development with radiolabeled annexin v and matrix metalloproteinase inhibitor in spontaneous atherosclerotic mice. J Nucl Cardiol. 2010;17:1073–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Ohshima S, Petrov A, Fujimoto S, Zhou J, Azure M, Edwards DS, Murohara T, Narula N, Tsimikas S, Narula J. Molecular imaging of matrix metalloproteinase expression in atherosclerotic plaques of mice deficient in apolipoprotein E or low-density-lipoprotein receptor. J Nucl Med. 2009;50:612–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Kolodgie FD, Narula J, Burke AP, Haider N, Farb A, Hui-Liang Y, Smialek J, Virmani R. Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol. 2000;157:1259–68.PubMedCrossRefGoogle Scholar
  20. 20.
    van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP. Annexin v-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 1998;31:1–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Ishino S, Kuge Y, Takai N, Tamaki N, Strauss HW, Blankenberg FG, Shiomi M, Saji H. 99mtc-annexin a5 for noninvasive characterization of atherosclerotic lesions: imaging and histological studies in myocardial infarction-prone watanabe heritable hyperlipidemic rabbits. Eur J Nucl Med Mol Imaging. 2007;34:889–99.PubMedCrossRefGoogle Scholar
  22. 22.
    Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, Hartung D, Steinmetz N, Vanderheyden JL, Vannan MA, Gold HK, Reutelingsperger CP, Hofstra L, Narula J. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin v: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation. 2003;108:3134–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Kietselaer BL, Reutelingsperger CP, Heidendal GA, Daemen MJ, Mess WH, Hofstra L, Narula J. Noninvasive detection of plaque instability with use of radiolabeled annexin a5 in patients with carotid-artery atherosclerosis. N Engl J Med. 2004;350:1472–3.PubMedCrossRefGoogle Scholar
  24. 24.
    Ishino S, Mukai T, Kuge Y, Kume N, Ogawa M, Takai N, Kamihashi J, Shiomi M, Minami M, Kita T, Saji H. Targeting of lectinlike oxidized low-density lipoprotein receptor 1 (lox-1) with 99mtc-labeled anti-lox-1 antibody: potential agent for imaging of vulnerable plaque. J Nucl Med. 2008;49:1677–85.PubMedCrossRefGoogle Scholar
  25. 25.
    Tsimikas S, Palinski W, Halpern SE, Yeung DW, Curtiss LK, Witztum JL. Radiolabeled mda2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J Nucl Cardiol. 1999;6:41–53.PubMedCrossRefGoogle Scholar
  26. 26.
    Bates SM, Lister-James J, Julian JA, Taillefer R, Moyer BR, Ginsberg JS. Imaging characteristics of a novel technetium tc 99 m-labeled platelet glycoprotein iib/iiia receptor antagonist in patients with acute deep vein thrombosis or a history of deep vein thrombosis. Arch Intern Med. 2003;163:452–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Sakuma T, Sari I, Goodman CN, Lindner JR, Klibanov AL, Kaul S. Simultaneous integrin alphavbeta3 and glycoprotein iib/iiia inhibition causes reduction in infarct size in a model of acute coronary thrombosis and primary angioplasty. Cardiovasc Res. 2005;66:552–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25:2054–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Dijkgraaf I, Beer AJ, Wester HJ. Application of rgd-containing peptides as imaging probes for alphavbeta3 expression. Front Biosci. 2009;14:887–99.PubMedCrossRefGoogle Scholar
  30. 30.
    Dobrucki LW, Sinusas AJ. PET and SPECT in cardiovascular molecular imaging. Nat Rev Cardiol. 2010;7:38–47.PubMedCrossRefGoogle Scholar
  31. 31.
    Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R. Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging. 2006;5:85–92.PubMedGoogle Scholar
  32. 32.
    Weissleder R, Mahmood U. Molecular imaging. Radiology. 2001;219:316–33.PubMedGoogle Scholar
  33. 33.
    McConnell MV, Aikawa M, Maier SE, Ganz P, Libby P, Lee RT. MRI of rabbit atherosclerosis in response to dietary cholesterol lowering. Arterioscler Thromb Vasc Biol. 1999;19:1956–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Trogan E, Fayad ZA, Itskovich VV, Aguinaldo JG, Mani V, Fallon JT, Chereshnev I, Fisher EA. Serial studies of mouse atherosclerosis by in vivo magnetic resonance imaging detect lesion regression after correction of dyslipidemia. Arterioscler Thromb Vasc Biol. 2004;24:1714–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Skinner MP, Yuan C, Mitsumori L, Hayes CE, Raines EW, Nelson JA, Ross R. Serial magnetic resonance imaging of experimental atherosclerosis detects lesion fine structure, progression and complications in vivo. Nat Med. 1995;1:69–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Yonemura A, Momiyama Y, Fayad ZA, Ayaori M, Ohmori R, Higashi K, Kihara T, Sawada S, Iwamoto N, Ogura M, Taniguchi H, Kusuhara M, Nagata M, Nakamura H, Tamai S, Ohsuzu F. Effect of lipid-lowering therapy with atorvastatin on atherosclerotic aortic plaques detected by noninvasive magnetic resonance imaging. J Am Coll Cardiol. 2005;45:733–42.PubMedCrossRefGoogle Scholar
  37. 37.
    Morris JB, Olzinski AR, Bernard RE, Aravindhan K, Mirabile RC, Boyce R, Willette RN, Jucker BM. P38 mapk inhibition reduces aortic ultrasmall superparamagnetic iron oxide uptake in a mouse model of atherosclerosis: MRI assessment. Arterioscler Thromb Vasc Biol. 2008;28:265–71.PubMedCrossRefGoogle Scholar
  38. 38.
    Aikawa E, Nahrendorf M, Figueiredo JL, Swirski FK, Shtatland T, Kohler RH, Jaffer FA, Aikawa M, Weissleder R. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007;116:2841–50.PubMedCrossRefGoogle Scholar
  39. 39.
    •• Morishige K, Kacher DF, Libby P, Josephson L, Ganz P, Weissleder R, Aikawa M. High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation. 2010;122:1707–15. This original report demonstrated that iron nanoparticles can quantitatively identify macrophage accumuation in atherosclerotic plaques and monitor changes during a statin therapy. PubMedCrossRefGoogle Scholar
  40. 40.
    Jaffer FA, Vinegoni C, John MC, Aikawa E, Gold HK, Finn AV, Ntziachristos V, Libby P, Weissleder R. Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation. 2008;118:1802–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Makowski MR, Wiethoff AJ, Blume U, Cuello F, Warley A, Jansen CH, Nagel E, Razavi R, Onthank DC, Cesati RR, Marber MS, Schaeffter T, Smith A, Robinson SP, Botnar RM. Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med. 2011;17:383–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Li D, Patel AR, Klibanov AL, Kramer CM, Ruiz M, Kang BY, Mehta JL, Beller GA, Glover DK, Meyer CH. Molecular imaging of atherosclerotic plaques targeted to oxidized ldl receptor lox-1 by spect/ct and magnetic resonance. Circ Cardiovasc Imaging. 2010;3:464–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Briley-Saebo KC, Cho YS, Shaw PX, Ryu SK, Mani V, Dickson S, Izadmehr E, Green S, Fayad ZA, Tsimikas S. Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. J Am Coll Cardiol. 2011;57:337–47.PubMedCrossRefGoogle Scholar
  44. 44.
    Briley-Saebo KC, Cho YS, Tsimikas S. Imaging of oxidation-specific epitopes in atherosclerosis and macrophage-rich vulnerable plaques. Curr Cardiovasc Imaging Rep. 2011;4:4–16.PubMedCrossRefGoogle Scholar
  45. 45.
    Cai K, Caruthers SD, Huang W, Williams TA, Zhang H, Wickline SA, Lanza GM, Winter PM. Mr molecular imaging of aortic angiogenesis. JACC Cardiovasc Imaging. 2010;3:824–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Qiu B, Yang X. Molecular mri of hematopoietic stem-progenitor cells: in vivo monitoring of gene therapy and atherosclerosis. Nat Clin Pract Cardiovasc Med. 2008;5:396–404.PubMedCrossRefGoogle Scholar
  47. 47.
    Sosnovik DE, Nahrendorf M, Panizzi P, Matsui T, Aikawa E, Dai G, Li L, Reynolds F, Dorn 2nd GW, Weissleder R, Josephson L, Rosenzweig A. Molecular mri detects low levels of cardiomyocyte apoptosis in a transgenic model of chronic heart failure. Circ Cardiovasc Imaging. 2009;2:468–75.PubMedCrossRefGoogle Scholar
  48. 48.
    Sosnovik DE, Garanger E, Aikawa E, Nahrendorf M, Figuiredo JL, Dai G, Reynolds F, Rosenzweig A, Weissleder R, Josephson L. Molecular mri of cardiomyocyte apoptosis with simultaneous delayed-enhancement mri distinguishes apoptotic and necrotic myocytes in vivo: potential for midmyocardial salvage in acute ischemia. Circ Cardiovasc Imaging. 2009;2:460–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen J, Tung CH, Mahmood U, Ntziachristos V, Gyurko R, Fishman MC, Huang PL, Weissleder R. In vivo imaging of proteolytic activity in atherosclerosis. Circulation. 2002;105:2766–71.PubMedCrossRefGoogle Scholar
  50. 50.
    Jaffer FA, Weissleder R. Seeing within: molecular imaging of the cardiovascular system. Circ Res. 2004;94:433–45.PubMedCrossRefGoogle Scholar
  51. 51.
    Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA, Aikawa M, Weissleder R. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation. 2007;115:377–86.PubMedCrossRefGoogle Scholar
  52. 52.
    •• Aikawa E, Aikawa M, Libby P, Figueiredo JL, Rusanescu G, Iwamoto Y, Fukuda D, Kohler RH, Shi GP, Jaffer FA, Weissleder R. Arterial and aortic valve calcification abolished by elastolytic cathepsin s deficiency in chronic renal disease. Circulation. 2009;119:1785–94. This study used near-infrared molecular imaging to provide direct in vivo evidence that cathepsin S–induced elastolysis, derived from macrophages, promotes osteogenic activity and calcification in atherosclerotic arteries and aortic valves. PubMedCrossRefGoogle Scholar
  53. 53.
    Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V, Weissleder R, Libby P. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation. 2006;114:55–62.PubMedCrossRefGoogle Scholar
  54. 54.
    • Hjortnaes J, Butcher J, Figueiredo JL, Riccio M, Kohler RH, Kozloff KM, Weissleder R, Aikawa E. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: A role for inflammation. Eur Heart J. 2010;31:1975–84. Using optical imaging and micro CT, this study demonstrated in vivo that macrophage burden and calcification are associated with each other in arteries and aortic valves, whereas inflammation inversly correlates with bone mineralization. PubMedCrossRefGoogle Scholar
  55. 55.
    Quillard T, Tesmenitsky Y, Croce K, Travers R, Shvartz E, Koskinas KC, Sukhova G, Aikawa E, Aikawa M, Libby P. Selective inhibition of matrix metalloproteinase-13 increases collagen content of established mouse atheromas. Arterioscler Thromb Vasc Biol. 2011.Google Scholar
  56. 56.
    Jaffer FA, Kim DE, Quinti L, Tung CH, Aikawa E, Pande AN, Kohler RH, Shi GP, Libby P, Weissleder R. Optical visualization of cathepsin k activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation. 2007;115:2292–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Hjortnaes J, Gottlieb D, Figueiredo JL, Melero-Martin J, Kohler RH, Bischoff J, Weissleder R, Mayer J, Aikawa E. Intravital molecular imaging of small-diameter tissue-engineered vascular grafts: a feasibility study. Tissue Eng Part C Methods. 2009.Google Scholar
  58. 58.
    Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med. 2003;9:123–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Jaffer FA. Intravital fluorescence microscopic molecular imaging of atherosclerosis. Methods Mol Biol. 2011;680:131–40.PubMedCrossRefGoogle Scholar
  60. 60.
    Suter MJ, Nadkarni SK, Weisz G, Tanaka A, Jaffer FA, Bouma BE, Tearney GJ. Intravascular optical imaging technology for investigating the coronary artery. JACC Cardiovasc Imaging. 2011;4:1022–39.PubMedCrossRefGoogle Scholar
  61. 61.
    Vinegoni C, Botnaru I, Aikawa E, Calfon MA, Iwamoto Y, Folco EJ, Ntziachristos V, Weissleder R, Libby P, Jaffer FA. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med. 2011;3:84ra45.PubMedCrossRefGoogle Scholar
  62. 62.
    New SE, Aikawa E. Cardiovascular calcification: an inflammatory disease. Circ J. 2011;75:1305–13.PubMedCrossRefGoogle Scholar
  63. 63.
    Tintut Y, Patel J, Parhami F, Demer LL. Tumor necrosis factor-alpha promotes in vitro calcification of vascular cells via the camp pathway. Circulation. 2000;102:2636–42.PubMedGoogle Scholar
  64. 64.
    Demer LL, Tintut Y. Mineral exploration: search for the mechanism of vascular calcification and beyond: the 2003 Jeffrey M. Hoeg award lecture. Arterioscler Thromb Vasc Biol. 2003;23:1739–43.PubMedCrossRefGoogle Scholar
  65. 65.
    Towler DA. Oxidation, inflammation, and aortic valve calcification peroxide paves an osteogenic path. J Am Coll Cardiol. 2008;52:851–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation. 2008;117:2938–48.PubMedCrossRefGoogle Scholar
  67. 67.
    Watson KE, Bostrom K, Ravindranath R, Lam T, Norton B, Demer LL. Tgf-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest. 1994;93:2106–13.PubMedCrossRefGoogle Scholar
  68. 68.
    Tintut Y, Morony S, Demer LL. Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler Thromb Vasc Biol. 2004;24:e6–10.PubMedCrossRefGoogle Scholar
  69. 69.
    Otto CM. Calcific aortic stenosis–time to look more closely at the valve. N Engl J Med. 2008;359:1395–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Doherty TM, Asotra K, Fitzpatrick LA, Qiao JH, Wilkin DJ, Detrano RC, Dunstan CR, Shah PK, Rajavashisth TB. Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc Natl Acad Sci U S A. 2003;100:11201–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Abedin M, Tintut Y, Demer LL. Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol. 2004;24:1161–70.PubMedCrossRefGoogle Scholar
  72. 72.
    Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 2001;103:1051–6.PubMedGoogle Scholar
  73. 73.
    Rajamannan NM, Evans FJ, Aikawa E, Grande-Allen KJ, Demer LL, Heistad DD, Simmons CA, Masters KS, Mathieu P, O’Brien KD, Schoen FJ, Towler DA, Yoganathan AP, Otto CM. Calcific aortic valve disease: Not simply a degenerative process: a review and agenda for research from the national heart and lung and blood institute aortic stenosis working group * executive summary: calcific aortic valve disease - 2011 update. Circulation. 2011;124:1783–91.PubMedCrossRefGoogle Scholar
  74. 74.
    Parhami F, Basseri B, Hwang J, Tintut Y, Demer LL. High-density lipoprotein regulates calcification of vascular cells. Circ Res. 2002;91:570–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Radcliff K, Tang TB, Lim J, Zhang Z, Abedin M, Demer LL, Tintut Y. Insulin-like growth factor-i regulates proliferation and osteoblastic differentiation of calcifying vascular cells via extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase pathways. Circ Res. 2005;96:398–400.PubMedCrossRefGoogle Scholar
  76. 76.
    Towler DA. Imaging aortic matrix metabolism: Mirabile visu! Circulation. 2007;115:297–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Chen IY, Wu JC. Cardiovascular molecular imaging: focus on clinical translation. Circulation. 2011;123:425–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Elena Aikawa
    • 1
  • Sophie E. P. New
    • 1
  • Tetsuro Miyazaki
    • 1
  • Daiju Fukuda
    • 1
  • Masanori Aikawa
    • 1
    • 2
  1. 1.Cardiovascular Division, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Center for Excellence in Vascular BiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations