Current Cardiovascular Imaging Reports

, Volume 4, Issue 2, pp 165–170

Coronary MRA: Technical Advances and Clinical Applications



Magnetic resonance angiography (MRA) has become a routine clinical tool to evaluate arteries in the head and neck, abdomen, and extremities. However, coronary MRA (CMRA) is a more challenging task. A number of factors have hindered its progress, including: 1) the motion of the heart during cardiac and respiratory cycles; 2) the highly tortuous courses; and 3) the small sizes of coronary arteries. It is important to have an appropriate balance between signal-to-noise ratio (SNR), imaging speed, and spatial resolution when determining imaging parameters of CMRA. Whole heart CMRA at 1.5 T has been successfully introduced as a method of choice that can provide visualization of all three major coronary arteries in a single 3D volume. Recent single and multicenter studies suggest that 1.5 T whole heart CMRA can eliminate the need for diagnostic coronary catheterization in many patients at risk of coronary artery disease. 3.0 T cardiovascular MR has become an area of active research in recent years. Contrast-enhanced coronary MRA at 3.0 T improves SNR and contrast-to-noise ratio and shows high accuracy in the detection of significant coronary artery stenoses.


Coronary artery disease Coronary magnetic resonance angiography Whole-heart 3.0 Tesla 


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. Nov 27 2008;359(22):2324–2336PubMedCrossRefGoogle Scholar
  2. 2.
    Wang Y, Vidan E, Bergman GW. Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology. Dec 1999;213(3):751–758.PubMedGoogle Scholar
  3. 3.
    Li D, Kaushikkar S, Haacke E, et al. Coronary arteries: three-dimensional MR imaging with retrospective respiratory gating. Radiology. 1996;201:857–863.PubMedGoogle Scholar
  4. 4.
    Edelman R, Manning W, Burstein D, Paulin S. Coronary arteries: breath-hold MR angiography. Radiology. 1991;181(3):641–643.PubMedGoogle Scholar
  5. 5.
    Li D, Paschal CB, Haacke EM, Adler LP. Coronary arteries: three-dimensional MR imaging with fat saturation and magnetization transfer contrast. Radiology. May 1993;187(2):401–406.PubMedGoogle Scholar
  6. 6.
    Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ. Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation. Jun 22 1999;99(24):3139–3148.PubMedGoogle Scholar
  7. 7.
    Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG. Coronary angiography with magnetization-prepared T2 contrast. Magn Reson Med. May 1995;33(5):689–696.PubMedCrossRefGoogle Scholar
  8. 8.
    Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology. Jun 2001;219(3):828–834.PubMedGoogle Scholar
  9. 9.
    Sakuma H, Ichikawa Y, Suzawa N, et al. Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology. Oct 2005;237(1):316–321.PubMedCrossRefGoogle Scholar
  10. 10.
    Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med. Dec 2003;50(6):1223–1228.PubMedCrossRefGoogle Scholar
  11. 11.
    Zheng J, Li D, Bae KT, Woodard P, Haacke EM. Three-dimensional gadolinium-enhanced coronary magnetic resonance angiography: initial experience. J Cardiovasc Magn Reson. 1999;1(1):33–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Prince MR, Yucel EK, Kaufman JA, Harrison DC, Geller SC. Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging. Nov-Dec 1993;3(6):877–881.PubMedCrossRefGoogle Scholar
  13. 13.
    Foo TK, Saranathan M, Prince MR, Chenevert TL. Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. Radiology. Apr 1997;203(1):275–280.PubMedGoogle Scholar
  14. 14.
    Wilman AH, Riederer SJ, King BF, Debbins JP, Rossman PJ, Ehman RL. Fluoroscopically triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: application to the renal arteries. Radiology. Oct 1997;205(1):137–146.PubMedGoogle Scholar
  15. 15.
    Anzai Y, Prince MR, Chenevert TL, et al. MR angiography with an ultrasmall superparamagnetic iron oxide blood pool agent. J Magn Reson Imaging. Jan–Feb 1997;7(1):209–214.PubMedCrossRefGoogle Scholar
  16. 16.
    Huber ME, Paetsch I, Schnackenburg B, et al. Performance of a new gadolinium-based intravascular contrast agent in free-breathing inversion-recovery 3D coronary MRA. Magn Reson Med. Jan 2003;49(1):115–121.PubMedCrossRefGoogle Scholar
  17. 17.
    Niendorf T, Hardy CJ, Giaquinto RO, et al. Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med. Jul 2006;56(1):167–176.PubMedCrossRefGoogle Scholar
  18. 18.
    Deshpande VS, Shea SM, Li D. Artifact reduction in true-FISP imaging of the coronary arteries by adjusting imaging frequency. Magn Reson Med. May 2003;49(5):803–809.PubMedCrossRefGoogle Scholar
  19. 19.
    Schar M, Kozerke S, Fischer SE, Boesiger P. Cardiac SSFP imaging at 3 Tesla. Magn Reson Med. Apr 2004;51(4):799–806.PubMedCrossRefGoogle Scholar
  20. 20.
    Nezafat R, Stuber M, Ouwerkerk R, Gharib AM, Desai MY, Pettigrew RI. B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T. Magn Reson Med. Apr 2006;55(4):858–864.PubMedCrossRefGoogle Scholar
  21. 21.
    van Elderen SG, Versluis MJ, Webb AG, et al. Initial results on in vivo human coronary MR angiography at 7 T. Magn Reson Med. Dec 2009;62(6):1379–1384.PubMedCrossRefGoogle Scholar
  22. 22.
    Bi X, Carr JC, Li D. Whole-heart coronary magnetic resonance angiography at 3 Tesla in 5 minutes with slow infusion of Gd-BOPTA, a high-relaxivity clinical contrast agent. Magn Reson Med. Jul 2007;58(1):1–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu X, Bi X, Huang J, Jerecic R, Carr J, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 T. Invest Radiol. Sep 2008;43(9):663–668.PubMedCrossRefGoogle Scholar
  24. 24.
    Prompona M, Cyran C, Nikolaou K, Bauner K, Reiser M, Huber A. Contrast-enhanced whole-heart MR coronary angiography at 3.0 T using the intravascular contrast agent gadofosveset. Invest Radiol. Jul 2009;44(7):369–374.PubMedCrossRefGoogle Scholar
  25. 25.
    Meyer CH, Hu BS, Nishimura DG, Macovski A. Fast spiral coronary artery imaging. Magn Reson Med. Dec 1992;28(2):202–213.PubMedCrossRefGoogle Scholar
  26. 26.
    Stehning C, Bornert P, Nehrke K, Eggers H, Dossel O. Fast isotropic volumetric coronary MR angiography using free-breathing 3D radial balanced FFE acquisition. Magn Reson Med. Jul 2004;52(1):197–203.PubMedCrossRefGoogle Scholar
  27. 27.
    Deshpande VS, Wielopolski PA, Shea SM, Carr JC, Zheng J, Li D. Coronary artery imaging using contrast-enhanced 3D segmented EPI. J Magn Reson Imaging. 2001;13(5):676–681.PubMedCrossRefGoogle Scholar
  28. 28.
    Bhat H, Zuehlsdorff S, Bi X, Li D. Whole-heart contrast-enhanced coronary magnetic resonance angiography using gradient echo interleaved EPI. Magn Reson Med. Jun 2009;61(6):1388–1395.PubMedCrossRefGoogle Scholar
  29. 29.
    • Kato S, Kitagawa K, Ishida N, et al. Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. J Am Coll Cardiol. Sep 14 2010;56(12):983–991. This is the first national multicenter trial that assessed the diagnostic value of 1.5-T whole-heart CMRA. Google Scholar
  30. 30.
    • Yang Q, Li K, Liu X, et al. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol. Jun 30 2009;54(1):69–76. This is a single-center, prospective trial comparing the accuracy of 3.0-T contrast-enhanced whole-heart CMRA with conventional quantitative coronary angiography in patients with suspected CAD. Google Scholar
  31. 31.
    Sakuma H, Ichikawa Y, Chino S, Hirano T, Makino K, Takeda K. Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol. Nov 21 2006;48(10):1946–1950.PubMedCrossRefGoogle Scholar
  32. 32.
    Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M. Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med. Feb 2 2010;152(3):167–177PubMedGoogle Scholar
  33. 33.
    Nagel E. Magnetic resonance coronary angiography: the condemned live longer. J Am Coll Cardiol. Sep 14 2010;56(12):992–994.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Radiology, Xuanwu HospitalCapital Medical UniversityBeijingChina
  2. 2.Biomedical Imaging Research InstituteCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations