Current Cardiovascular Imaging Reports

, Volume 3, Issue 4, pp 190–196

Intracoronary Ultrasound in Assessing Efficacy of Cardiovascular Drugs

  • Stephen J. Nicholls
  • Kiyoko Uno
  • E. Murat Tuzcu
  • Steven E. Nissen


Despite substantial advances in our approach to prevent cardiovascular disease, there is an ongoing need to develop new therapeutic strategies to achieve more effective reduction in cardiovascular risk. Intravascular ultrasound imaging of the coronary arteries has been increasingly employed in clinical trials to evaluate the impact of medical therapies on the progression of atherosclerosis. In addition to the ability to assess whether novel agents can slow disease progression, these studies have provided a number of important insights into the factors that underlie the natural history of disease progression.


Intravascular ultrasound Atherosclerosis Risk factors Cardiovascular disease Clinical trials 


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Lloyd-Jones D, Adams RJ, Brown TM, et al.: Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 2010, 121:e46–e215.CrossRefPubMedGoogle Scholar
  2. 2.
    Libby P: Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 2001, 104:365–372.PubMedGoogle Scholar
  3. 3.
    Mintz GS, Nissen SE, Anderson WD, et al.: American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 2001, 37:1478–1492.CrossRefPubMedGoogle Scholar
  4. 4.
    Nissen SE, Gurley JC, Grines CL, et al.: Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 1991, 84:1087–1099.PubMedGoogle Scholar
  5. 5.
    Glagov S, Weisenberg E, Zarins CK, et al.: Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987, 316:1371–1375.PubMedGoogle Scholar
  6. 6.
    Wiviott SD, Cannon CP: Update on lipid-lowering therapy and LDL-cholesterol targets. Nat Clin Pract Cardiovasc Med 2006, 3:424–436.CrossRefPubMedGoogle Scholar
  7. 7.
    Baigent C, Keech A, Kearney PM, et al.: Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005, 366:1267–1278.CrossRefPubMedGoogle Scholar
  8. 8.
    Buja LM, Kita T, Goldstein JL, et al.: Cellular pathology of progressive atherosclerosis in the WHHL rabbit. An animal model of familial hypercholesterolemia. Arteriosclerosis 1983, 3:87–101.PubMedGoogle Scholar
  9. 9.
    Zhao S, Zhang C, Lin Y, et al.: The effects of rosiglitazone on aortic atherosclerosis of cholesterol-fed rabbits. Thromb Res 2008, 123:281–287.CrossRefPubMedGoogle Scholar
  10. 10.
    Goldstein JL, Ho YK, Basu SK, et al.: Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A 1979, 76:333–337.CrossRefPubMedGoogle Scholar
  11. 11.
    Steinberg D, Parthasarathy S, Carew TE, et al.: Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989, 320:915–924.PubMedGoogle Scholar
  12. 12.
    Ballantyne CM: Clinical trial endpoints: angiograms, events, and plaque instability. Am J Cardiol 1998, 82:5M–11M.CrossRefPubMedGoogle Scholar
  13. 13.
    Taylor AJ, Kent SM, Flaherty PJ, et al.: ARBITER: Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol: a randomized trial comparing the effects of atorvastatin and pravastatin on carotid intima medial thickness. Circulation 2002, 106:2055–2060.CrossRefPubMedGoogle Scholar
  14. 14.
    Fleg JL, Mete M, Howard BV, et al.: Effect of statins alone versus statins plus ezetimibe on carotid atherosclerosis in type 2 diabetes: the SANDS (Stop Atherosclerosis in Native Diabetics Study) trial. J Am Coll Cardiol 2008, 52:2198–2205.CrossRefPubMedGoogle Scholar
  15. 15.
    Schartl M, Bocksch W, Koschyk DH, et al.: Use of intravascular ultrasound to compare effects of different strategies of lipid-lowering therapy on plaque volume and composition in patients with coronary artery disease. Circulation 2001, 104:387–392.CrossRefPubMedGoogle Scholar
  16. 16.
    Nissen SE, Tuzcu EM, Schoenhagen P, et al.: Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 2004, 291:1071–1080.CrossRefPubMedGoogle Scholar
  17. 17.
    Nissen SE, Tuzcu EM, Schoenhagen P, et al.: Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med 2005, 352:29–38.CrossRefPubMedGoogle Scholar
  18. 18.
    Nissen SE, Nicholls SJ, Sipahi I, et al.: Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 2006, 295:1556–1565.CrossRefPubMedGoogle Scholar
  19. 19.
    Okazaki S, Yokoyama T, Miyauchi K, et al.: Early statin treatment in patients with acute coronary syndrome: demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the ESTABLISH Study. Circulation 2004, 110:1061–1068.CrossRefPubMedGoogle Scholar
  20. 20.
    Jensen LO, Thayssen P, Pedersen KE, et al.: Regression of coronary atherosclerosis by simvastatin: a serial intravascular ultrasound study. Circulation 2004, 110:265–270.CrossRefPubMedGoogle Scholar
  21. 21.
    Gordon DJ, Probstfield JL, Garrison RJ, et al.: High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 1989, 79:8–15.PubMedGoogle Scholar
  22. 22.
    Barter P, Gotto AM, LaRosa JC, et al.: HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med 2007, 357:1301–1310.CrossRefPubMedGoogle Scholar
  23. 23.
    Nicholls SJ, Cutri B, Worthley SG, et al.: Impact of short-term administration of high-density lipoproteins and atorvastatin on atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 2005, 25:2416-2421.CrossRefPubMedGoogle Scholar
  24. 24.
    Rong JX, Li J, Reis ED, et al.: Elevating high-density lipoprotein cholesterol in apolipoprotein E-deficient mice remodels advanced atherosclerotic lesions by decreasing macrophage and increasing smooth muscle cell content. Circulation 2001, 104:2447–2452.CrossRefPubMedGoogle Scholar
  25. 25.
    Shah PK, Yano J, Reyes O, et al.: High-dose recombinant apolipoprotein A-I(milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein e-deficient mice. Potential implications for acute plaque stabilization. Circulation 2001, 103:3047–3050.CrossRefPubMedGoogle Scholar
  26. 26.
    Barter PJ, Nicholls S, Rye KA, et al.: Antiinflammatory properties of HDL. Circ Res 2004, 95:764–772.CrossRefPubMedGoogle Scholar
  27. 27.
    • Nicholls SJ, Tuzcu EM, Sipahi I, et al.: Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA 2007, 297:499–508. This is the first demonstration of the impact of HDL cholesterol elevation with statins on progression of coronary atherosclerosis.CrossRefPubMedGoogle Scholar
  28. 28.
    Nicholls SJ, Tuzcu EM, Sipahi I, et al.: Relationship between atheroma regression and change in lumen size after infusion of apolipoprotein A-I Milano. J Am Coll Cardiol 2006, 47:992–997.CrossRefPubMedGoogle Scholar
  29. 29.
    Nissen SE, Tsunoda T, Tuzcu EM, et al.: Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 2003, 290:2292–2300.CrossRefPubMedGoogle Scholar
  30. 30.
    Tardif JC, Gregoire J, L’Allier PL, et al.: Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 2007, 297:1675–1682.CrossRefPubMedGoogle Scholar
  31. 31.
    Sacks FM, Rudel LL, Conner A, et al.: Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo. J Lipid Res 2009, 50:894–907.CrossRefPubMedGoogle Scholar
  32. 32.
    Barter P: CETP and atherosclerosis. Arterioscler Thromb Vasc Biol 2000, 20:2029–2031.PubMedGoogle Scholar
  33. 33.
    Rittershaus CW, Miller DP, Thomas LJ, et al.: Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol 2000, 20:2106–2112.PubMedGoogle Scholar
  34. 34.
    Barter PJ, Caulfield M, Eriksson M, et al.: Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007, 357:2109–2122.CrossRefPubMedGoogle Scholar
  35. 35.
    Nissen SE, Tardif JC, Nicholls SJ, et al.: Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med 2007, 356:1304–1316.CrossRefPubMedGoogle Scholar
  36. 36.
    Bots ML, Visseren FL, Evans GW, et al.: Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet 2007, 370:153–160.CrossRefPubMedGoogle Scholar
  37. 37.
    Kastelein JJ, van Leuven SI, Burgess L, et al.: Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med 2007, 356:1620–1630.CrossRefPubMedGoogle Scholar
  38. 38.
    • Nicholls SJ, Tuzcu EM, Brennan DM, et al.: Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation). Circulation 2008, 118:2506–2514. Regression at highest levels of HDL cholesterol with torcetrapib suggests HDL functionality.CrossRefPubMedGoogle Scholar
  39. 39.
    Sofat R, Hingorani AD, Smeeth L, et al.: Separating the mechanism-based and off-target actions of cholesteryl ester transfer protein inhibitors with CETP gene polymorphisms. Circulation 2010, 121:52–62.CrossRefPubMedGoogle Scholar
  40. 40.
    Lewington S, Clarke R, Qizilbash N, et al.: Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002, 360:1903–1913.CrossRefPubMedGoogle Scholar
  41. 41.
    Nissen SE, Tuzcu EM, Libby P, et al.: Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA 2004, 292:2217–2225.CrossRefPubMedGoogle Scholar
  42. 42.
    Sipahi I, Tuzcu EM, Schoenhagen P, et al.: Effects of normal, pre-hypertensive, and hypertensive blood pressure levels on progression of coronary atherosclerosis. J Am Coll Cardiol 2006, 48:833–838.CrossRefPubMedGoogle Scholar
  43. 43.
    Chhatriwalla AK, Nicholls SJ, Wang TH, et al.: Low levels of low-density lipoprotein cholesterol and blood pressure and progression of coronary atherosclerosis. J Am Coll Cardiol 2009, 53:1110–1115.CrossRefPubMedGoogle Scholar
  44. 44.
    Nicholls SJ, Tuzcu EM, Kalidindi S, et al.: Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J Am Coll Cardiol 2008, 52:255–262.CrossRefPubMedGoogle Scholar
  45. 45.
    • Nissen SE, Nicholls SJ, Wolski K, et al.: Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 2008, 299:1561–1573. This is the first report of halting progression of coronary atherosclerosis in patients with diabetes.CrossRefPubMedGoogle Scholar
  46. 46.
    Davidson M, Meyer PM, Haffner S, et al.: Increased high-density lipoprotein cholesterol predicts the pioglitazone-mediated reduction of carotid intima-media thickness progression in patients with type 2 diabetes mellitus. Circulation 2008, 117:2123–2130.CrossRefPubMedGoogle Scholar
  47. 47.
    Gerstein HC, Ratner RE, Cannon CP, et al.: Effect of rosiglitazone on progression of coronary atherosclerosis in patients with type 2 diabetes mellitus and coronary artery disease: the assessment on the prevention of progression by rosiglitazone on atherosclerosis in diabetes patients with cardiovascular history trial. Circulation 2010, 121:1176–1187.CrossRefPubMedGoogle Scholar
  48. 48.
    Bocan TM, Krause BR, Rosebury WS, et al.: The ACAT inhibitor avasimibe reduces macrophages and matrix metalloproteinase expression in atherosclerotic lesions of hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol 2000, 20:70–79.PubMedGoogle Scholar
  49. 49.
    Bocan TM, Krause BR, Rosebury WS, et al.: The combined effect of inhibiting both ACAT and HMG-CoA reductase may directly induce atherosclerotic lesion regression. Atherosclerosis 2001, 157:97–105.CrossRefPubMedGoogle Scholar
  50. 50.
    Tardif JC, Gregoire J, L’Allier PL, et al.: Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation 2004, 110:3372–3377.CrossRefPubMedGoogle Scholar
  51. 51.
    Nissen SE, Tuzcu EM, Brewer HB, et al.: Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med 2006, 354:1253–1263.CrossRefPubMedGoogle Scholar
  52. 52.
    Meuwese MC, de Groot E, Duivenvoorden R, et al.: ACAT inhibition and progression of carotid atherosclerosis in patients with familial hypercholesterolemia: the CAPTIVATE randomized trial. JAMA 2009, 301:1131–1139.CrossRefPubMedGoogle Scholar
  53. 53.
    Scheen AJ, Finer N, Hollander P, et al.: Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 2006, 368:1660–1672.CrossRefPubMedGoogle Scholar
  54. 54.
    Despres JP, Golay A, Sjostrom L: Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 2005, 353:2121–2134.CrossRefPubMedGoogle Scholar
  55. 55.
    Nissen SE, Nicholls SJ, Wolski K, et al.: Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA 2008, 299:1547–1560.CrossRefPubMedGoogle Scholar
  56. 56.
    Nair A, Kuban BD, Tuzcu EM, et al.: Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 2002, 106:2200–2206.CrossRefPubMedGoogle Scholar
  57. 57.
    Kawasaki M, Sano K, Okubo M, et al.: Volumetric quantitative analysis of tissue characteristics of coronary plaques after statin therapy using three-dimensional integrated backscatter intravascular ultrasound. J Am Coll Cardiol 2005, 45:1946–1953.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Stephen J. Nicholls
    • 1
    • 2
    • 3
  • Kiyoko Uno
    • 1
  • E. Murat Tuzcu
    • 1
  • Steven E. Nissen
    • 1
  1. 1.Department of Cardiovascular Medicine, Heart & Vascular InstituteCleveland ClinicClevelandUSA
  2. 2.Department of Cell BiologyCleveland ClinicClevelandUSA
  3. 3.Center for Cardiovascular Diagnostics and PreventionCleveland ClinicClevelandUSA

Personalised recommendations