Adjunctive use of cardiac CT in the coronary intervention laboratory

  • Carlos A. G. Van Mieghem
  • Steve Ramcharitar
  • Pim J. de Feyter
Article

Abstract

Cardiac CT is considered an appropriate diagnostic test for evaluation of symptomatic patients with low to intermediate pretest likelihood of coronary artery disease. A negative CT scan reliably rules out the presence of coronary artery disease, has a favorable prognostic value, and might therefore significantly impact the need for invasive coronary angiography. Patients with significant atherosclerotic disease on CT benefit from further functional assessment to decide upon the appropriate therapeutic approach. Beyond this gatekeeper function, cardiac CT overcomes the inherent two-dimensional limitations of the catheter-based approach and might be valuable as a complementary technique in patients with complex coronary artery disease.

References and Recommended Reading

  1. 1.
    Sones FM, Shirey EK, Proudfit WL, Westcott RN: Cine coronary arteriography. Circulation 1959, 20:773–775.Google Scholar
  2. 2.
    Moshage WE, Achenbach S, Seese B, et al.: Coronary artery stenoses: three-dimensional imaging with electrocardiographically triggered, contrast agent-enhanced, electron-beam CT. Radiology 1995, 196:707–714.PubMedGoogle Scholar
  3. 3.
    Meijboom WB, van Mieghem CA, Mollet NR, et al.: 64-slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease. J Am Coll Cardiol 2007, 50:1469–1475.CrossRefPubMedGoogle Scholar
  4. 4.
    Schroeder S, Achenbach S, Bengel F, et al.: Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J 2008, 29:531–556.CrossRefPubMedGoogle Scholar
  5. 5.
    Abdulla J, Abildstrom SZ, Gotzsche O, et al.: 64-multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography: a systematic review and meta-analysis. Eur Heart J 2007, 28:3042–3050.CrossRefPubMedGoogle Scholar
  6. 6.
    Miller JM, Rochitte CE, Dewey M, et al.: Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 2008, 359:2324–2336.CrossRefPubMedGoogle Scholar
  7. 7.
    Meijboom WB, Meijs MF, Schuijf JD, et al.: Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 2008, 52:2135–2144.CrossRefPubMedGoogle Scholar
  8. 8.
    Budoff MJ, Dowe D, Jollis JG, et al.: Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 2008, 52:1724–1732.CrossRefPubMedGoogle Scholar
  9. 9.
    Fox K, Garcia MA, Ardissino D, et al.: Guidelines on the management of stable angina pectoris: executive summary: the Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J 2006, 27:1341–1381.CrossRefPubMedGoogle Scholar
  10. 10.
    Lin GA, Dudley RA, Lucas FL, et al.: Frequency of stress testing to document ischemia prior to elective percutaneous coronary intervention. JAMA 2008, 300:1765–1773.CrossRefPubMedGoogle Scholar
  11. 11.
    Uretsky BF, Wang FW: Implementation and application of a continuous quality improvement (CQI) program for the cardiac catheterization laboratory: one institution’s 10-year experience. Catheter Cardiovasc Interv 2006, 68:586–595.CrossRefPubMedGoogle Scholar
  12. 12.
    Togni M, Balmer F, Pfiffner D, et al.: Percutaneous coronary interventions in Europe 1992-2001. Eur Heart J 2004, 25:1208–1213.CrossRefPubMedGoogle Scholar
  13. 13.
    Sones FM Jr: Indications and value of coronary arteriography. Circulation 1972, 46:1155–1160.PubMedGoogle Scholar
  14. 14.
    Hachamovitch R, Hayes SW, Friedman JD, et al.: Stress myocardial perfusion single-photon emission computed tomography is clinically effective and cost effective in risk stratification of patients with a high likelihood of coronary artery disease (CAD) but no known CAD. J Am Coll Cardiol 2004, 43:200–208.CrossRefPubMedGoogle Scholar
  15. 15.
    Steinberg EH, Madmon L, Patel CP, et al.: Long-term prognostic significance of dobutamine echocardiography in patients with suspected coronary artery disease: results of a 5-year follow-up study. J Am Coll Cardiol 1997, 29:969–973.CrossRefPubMedGoogle Scholar
  16. 16.
    Ragosta M, Bishop AH, Lipson LC, et al.: Comparison between angiography and fractional flow reserve versus single-photon emission computed tomographic myocardial perfusion imaging for determining lesion significance in patients with multivessel coronary disease. Am J Cardiol 2007, 99:896–902.CrossRefPubMedGoogle Scholar
  17. 17.
    Elhendy A, van Domburg RT, Bax JJ, et al.: Accuracy of dobutamine technetium 99m sestamibi SPECT imaging for the diagnosis of single-vessel coronary artery disease: comparison with echocardiography. Am Heart J 2000, 139:224–230.PubMedGoogle Scholar
  18. 18.
    Min JK, Shaw LJ, Devereux RB, et al.: Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol 2007, 50:1161–1170.CrossRefPubMedGoogle Scholar
  19. 19.
    Bluemke DA, Achenbach S, Budoff M, et al.: Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention, and the Councils on Clinical Cardiology and Cardiovascular Disease in the Young. Circulation 2008, 118:586–606.CrossRefPubMedGoogle Scholar
  20. 20.
    Silber S, Albertsson P, Aviles FF, et al.: Guidelines for percutaneous coronary interventions. The Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology. Eur Heart J 2005, 26:804–847.CrossRefPubMedGoogle Scholar
  21. 21.
    Shaw LJ, Berman DS, Maron DJ, et al.: Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 2008, 117:1283–1291.CrossRefPubMedGoogle Scholar
  22. 22.
    Schuijf JD, Wijns W, Jukema JW, et al.: Relationship between noninvasive coronary angiography with multislice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol 2006, 48:2508–2514.CrossRefPubMedGoogle Scholar
  23. 23.
    Meijboom WB, Van Mieghem CA, van Pelt N, et al.: Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 2008, 52:636–643.CrossRefPubMedGoogle Scholar
  24. 24.
    Berman DS, Kang X, Slomka PJ, et al.: Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol 2007, 14:521–528.CrossRefPubMedGoogle Scholar
  25. 25.
    Lee DY, Eigler N, Luo H, et al.: Effect of intracoronary ultrasound imaging on clinical decision making. Am Heart J 1995, 129:1084–1093.CrossRefPubMedGoogle Scholar
  26. 26.
    Yamashita T, Colombo A, Tobis JM: Limitations of coronary angiography compared with intravascular ultrasound: implications for coronary interventions. Prog Cardiovasc Dis 1999, 42:91–138.CrossRefPubMedGoogle Scholar
  27. 27.
    Topol EJ, Nissen SE: Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 1995, 92:2333–2342.PubMedGoogle Scholar
  28. 28.
    Berbarie RF, Dockery WD, Johnson KB, et al.: Use of multislice computed tomographic coronary angiography for the diagnosis of anomalous coronary arteries. Am J Cardiol 2006, 98:402–406.CrossRefPubMedGoogle Scholar
  29. 29.
    Bunce NH, Lorenz CH, Keegan J, et al.: Coronary artery anomalies: assessment with free-breathing three-dimensional coronary MR angiography. Radiology 2003, 227:201–208.CrossRefPubMedGoogle Scholar
  30. 30.
    Lemos PA, Serruys PW, van Domburg RT, et al.: Unrestricted utilization of sirolimus-eluting stents compared with conventional bare stent implantation in the “real world”: the Rapamycin-Eluting Stent Evaluated At Rotterdam Cardiology Hospital (RESEARCH) registry. Circulation 2004, 109:190–195.CrossRefPubMedGoogle Scholar
  31. 31.
    Van Mieghem CA, Thury A, Meijboom WB, et al.: Detection and characterization of coronary bifurcation lesions with 64-slice computed tomography coronary angiography. Eur Heart J 2007, 28:1968–1976.CrossRefPubMedGoogle Scholar
  32. 32.
    Fisher LD, Judkins MP, Lesperance J, et al.: Reproducibility of coronary arteriographic reading in the Coronary Artery Surgery Study (CASS). Cathet Cardiovasc Diagn 1982, 8:565–575.CrossRefPubMedGoogle Scholar
  33. 33.
    Christofferson RD, Lehmann KG, Martin GV, et al.: Effect of chronic total coronary occlusion on treatment strategy. Am J Cardiol 2005, 95:1088–1091.CrossRefPubMedGoogle Scholar
  34. 34.
    Puma JA, Sketch MH Jr, Tcheng JE, et al.: Percutaneous revascularization of chronic coronary occlusions: an overview. J Am Coll Cardiol 1995, 26:1–11.CrossRefPubMedGoogle Scholar
  35. 35.
    Mollet NR, Hoye A, Lemos PA, et al.: Value of preprocedure multislice computed tomographic coronary angiography to predict the outcome of percutaneous recanalization of chronic total occlusions. Am J Cardiol 2005, 95:240–243.CrossRefPubMedGoogle Scholar
  36. 36.
    Garcia-Garcia HM, van Mieghem CA, Gonzalo N, et al.: Computed tomography in total coronary occlusions (CTTO registry): radiation exposure and predictors of successful percutaneous intervention. EuroIntervention 2009, 4:607–616.PubMedGoogle Scholar
  37. 37.
    Patterson MS, Schotten J, van Mieghem C, et al.: Magnetic navigation in percutaneous coronary intervention. J Interv Cardiol 2006, 19:558–565.CrossRefPubMedGoogle Scholar
  38. 38.
    Webb JG, Pasupati S, Humphries K, et al.: Percutaneous transarterial aortic valve replacement in selected high-risk patients with aortic stenosis. Circulation 2007, 116:755–763.CrossRefPubMedGoogle Scholar
  39. 39.
    Goldstein JA, Gallagher MJ, O’Neill WW, et al.: A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 2007, 49:863–871.CrossRefPubMedGoogle Scholar
  40. 40.
    Brodoefel H, Reimann A, Burgstahler C, et al.: Noninvasive coronary angiography using 64-slice spiral computed tomography in an unselected patient collective: effect of heart rate, heart rate variability and coronary calcifications on image quality and diagnostic accuracy. Eur J Radiol 2007, 66:134–141CrossRefPubMedGoogle Scholar
  41. 41.
    Onuma Y, Tanabe K, Nakazawa G, et al.: Noncardiac findings in cardiac imaging with multidetector computed tomography. J Am Coll Cardiol 2006, 48:402–406.CrossRefPubMedGoogle Scholar
  42. 42.
    Einstein AJ, Henzlova MJ, Rajagopalan S: Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 2007, 298:317–323.CrossRefPubMedGoogle Scholar
  43. 43.
    Husmann L, Valenta I, Gaemperli O, et al.: Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 2008, 29:191–197.CrossRefPubMedGoogle Scholar
  44. 44.
    Budoff MJ, Achenbach S, Berman DS, et al.: Task force 13: training in advanced cardiovascular imaging (computed tomography) endorsed by the American Society of Nuclear Cardiology, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, and Society of Cardiovascular Computed Tomography. J Am Coll Cardiol 2008, 51:409–414.CrossRefPubMedGoogle Scholar
  45. 45.
    Scheffel H, Alkadhi H, Plass A, et al.: Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 2006, 16:2739–2747.CrossRefPubMedGoogle Scholar
  46. 46.
    Weustink AC, Meijboom WB, Mollet NR, et al.: Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol 2007, 50:786–794.CrossRefPubMedGoogle Scholar
  47. 47.
    Leber AW, Johnson T, Becker A, et al.: Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 2007, 28:2354–2360.CrossRefPubMedGoogle Scholar
  48. 48.
    Ropers U, Ropers D, Pflederer T, et al.: Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography. J Am Coll Cardiol 2007, 50:2393–2398.CrossRefPubMedGoogle Scholar
  49. 49.
    Alkadhi H, Scheffel H, Desbiolles L, et al.: Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. Eur Heart J 2008, 29:766–776.CrossRefPubMedGoogle Scholar
  50. 50.
    Scheffel H, Alkadhi H, Leschka S, et al.: Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 2008, 94:1132–1137.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Carlos A. G. Van Mieghem
    • 1
  • Steve Ramcharitar
  • Pim J. de Feyter
  1. 1.Departments of Cardiology and RadiologyErasmus Medical CenterRotterdamThe Netherlands

Personalised recommendations