Advertisement

Current Cardiovascular Imaging Reports

, Volume 2, Issue 6, pp 410–417 | Cite as

Value of cardiac CT in patients with heart failure

  • Deepa Mangalat
  • Andreas Kalogeropoulos
  • Vasiliki Georgiopoulou
  • Arthur Stillman
  • Javed Butler
Article

Abstract

Multidetector CT (MDCT) with 64-slice capability continues to gain momentum for cardiovascular imaging. Beyond images of coronary arteries, it also provides reliable information on left ventricular structure and function, cardiac venous anatomy, the pulmonary venous system, and right ventricular function—all aspects important in the management of heart failure patients. Potential unique applications in heart failure include cardiac dyssynchrony evaluation, assessing cardiomyopathies, and posttransplant annual follow-up. This review details the multiple applications and limitations of MDCT in the heart failure population, including comparison with other commonly used imaging modalities such as echocardiography and MRI.

Keywords

Cardiac Resynchronization Therapy Cardiac Compute Tomography Left Ventricular Dyssynchrony Arrhythmogenic Right Ventricular Dysplasia Left Ventricular Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Hunt SA, Abraham WT, Chin MH, et al.: ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation 2005, 112:e154–e235.CrossRefPubMedGoogle Scholar
  2. 2.
    Orakzai SH, Orakzai RH, Nasir K, Budoff MJ: Assessment of cardiac function using multidetector row computed tomography. J Comput Assist Tomogr 2006, 30:555–563.CrossRefPubMedGoogle Scholar
  3. 3.
    Juergens KU, Grude M, Maintz D, et al.: Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology 2004, 230:403–410.CrossRefPubMedGoogle Scholar
  4. 4.
    Juergens KU, Fischbach R: Left ventricular function studied with MDCT. Eur Radiol 2006, 16:342–357.CrossRefPubMedGoogle Scholar
  5. 5.
    Fischbach R, Juergens KU, Ozgun M, et al.: Assessment of regional left ventricular function with multidetector-row computed tomography versus magnetic resonance imaging. Eur Radiol 2007, 17:1009–1017.CrossRefPubMedGoogle Scholar
  6. 6.
    Grude M, Juergens KU, Wichter T, et al.: Evaluation of global left ventricular myocardial function with electrocardiogram-gated multidetector computed tomography: comparison with magnetic resonance imaging. Invest Radiol 2003, 38:653–661.CrossRefPubMedGoogle Scholar
  7. 7.
    Kristensen TS, Kofoed KF, Moller DV, et al.: Quantitative assessment of left ventricular systolic wall thickening using multidetector computed tomography. Eur J Radiol 2008 Aug 5 (Epub ahead of print).Google Scholar
  8. 8.
    Butler J, Shapiro MD, Jassal DS, et al.: Comparison of multidetector computed tomography and two-dimensional transthoracic echocardiography for left ventricular assessment in patients with heart failure. Am J Cardiol 2007, 99:247–249.CrossRefPubMedGoogle Scholar
  9. 9.
    Burns RJ, Gibbons RJ, Yi Q, et al.: The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J Am Coll Cardiol 2002, 39:30–36.CrossRefPubMedGoogle Scholar
  10. 10.
    Kim RJ, Wu E, Rafael A, et al.: The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000, 343:1445–1453.CrossRefPubMedGoogle Scholar
  11. 11.
    Baks T, Cademartiri F, Moelker AD, et al.: Assessment of acute reperfused myocardial infarction with delayed enhancement 64-MDCT. AJR Am J Roentgenol 2007, 188: W135–W137.CrossRefPubMedGoogle Scholar
  12. 12.
    Sato A, Hiroe M, Nozato T, et al.: Early validation study of 64-slice multidetector computed tomography for the assessment of myocardial viability and the prediction of left ventricular remodelling after acute myocardial infarction. Eur Heart J 2008, 29:490–498.CrossRefPubMedGoogle Scholar
  13. 13.
    Cury RC, Nieman K, Shapiro MD, et al.: Comprehensive assessment of myocardial perfusion defects, regional wall motion, and left ventricular function by using 64-section multidetector CT. Radiology 2008, 248:466–475.CrossRefPubMedGoogle Scholar
  14. 14.
    Koyama Y, Mochizuki T, Higaki J: Computed tomography assessment of myocardial perfusion, viability, and function. J Magn Reson Imaging 2004, 19:800–815.CrossRefPubMedGoogle Scholar
  15. 15.
    Cazeau S, Leclercq C, Lavergne T, et al.: Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 2001, 344:873–880.CrossRefPubMedGoogle Scholar
  16. 16.
    Swedberg K, Cleland J, Dargie H, et al.: Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology. Eur Heart J 2005, 26:1115–1140.CrossRefPubMedGoogle Scholar
  17. 17.
    Bank AJ, Kelly AS: Tissue Doppler imaging and left ventricular dyssynchrony in heart failure. J Card Fail 2006, 12:154–162.CrossRefPubMedGoogle Scholar
  18. 18.
    Van de Veire NR, Marsan NA, Schuijf JD, et al.: Noninvasive imaging of cardiac venous anatomy with 64-slice multi-slice computed tomography and noninvasive assessment of left ventricular dyssynchrony by 3-dimensional tissue synchronization imaging in patients with heart failure scheduled for cardiac resynchronization therapy. Am J Cardiol 2008, 101:1023–1029.CrossRefPubMedGoogle Scholar
  19. 19.
    Truong QA, Singh JP, Cannon CP, et al.: Quantitative analysis of intraventricular dyssynchrony using wall thickness by multidetector computed tomography. JACC Cardiovasc Imaging 2008, 1:772–781.CrossRefPubMedGoogle Scholar
  20. 20.
    Jongbloed MR, Lamb HJ, Bax JJ, et al.: Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol 2005, 45:749–753.CrossRefPubMedGoogle Scholar
  21. 21.
    Van de Veire NR, Schuijf JD, Sutter J, et al.: Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol 2006, 48:1832–1838.CrossRefPubMedGoogle Scholar
  22. 22.
    Leon AR, Delurgio DB, Mera F: Practical approach to implanting left ventricular pacing leads for cardiac resynchronization. J Cardiovasc Electrophysiol 2005, 16:100–105.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen JJ, Lee WJ, Wang YC, et al.: Morphologic and topologic characteristics of coronary venous system delineated by noninvasive multidetector computed tomography in chronic systolic heart failure patients. J Card Fail 2007, 13:482–488.CrossRefPubMedGoogle Scholar
  24. 24.
    Haissaguerre M, Sanders P, Hocini M, et al.: Catheter ablation of long-lasting persistent atrial fibrillation: critical structures for termination. J Cardiovasc Electrophysiol 2005, 16:1125–1137.CrossRefPubMedGoogle Scholar
  25. 25.
    Hsu LF: Image integration for catheter ablation: searching for the perfect match. Heart Rhythm 2008, 5:536–537.CrossRefPubMedGoogle Scholar
  26. 26.
    Niinuma H, George RT, Arbab-Zadeh A, et al.: Imaging of pulmonary veins during catheter ablation for atrial fibrillation: the role of multi-slice computed tomography. Europace 2008, 10(Suppl 3):iii14–iii21.CrossRefPubMedGoogle Scholar
  27. 27.
    Lacomis JM, Wigginton W, Fuhrman C, et al.: Multi-detector row CT of the left atrium and pulmonary veins before radio-frequency catheter ablation for atrial fibrillation. Radiographics 2003, 23:S35–S48; discussion S48–S50.CrossRefPubMedGoogle Scholar
  28. 28.
    Aranda JM Jr, Hill J: Cardiac transplant vasculopathy. Chest 2000, 118:1792–1800.CrossRefPubMedGoogle Scholar
  29. 29.
    Johnson DE, Alderman EL, Schroeder JS, et al.: Transplant coronary artery disease: histopathologic correlations with angiographic morphology. J Am Coll Cardiol 1991, 17:449–457.PubMedCrossRefGoogle Scholar
  30. 30.
    St Goar FG, Pinto FJ, Alderman EL, et al.: Intracoronary ultrasound in cardiac transplant recipients. In vivo evidence of “angiographically silent” intimal thickening. Circulation 1992, 85:979–987.PubMedGoogle Scholar
  31. 31.
    Kobashigawa JA, Tobis JM, Starling RC, et al.: Multicenter intravascular ultrasound validation study among heart transplant recipients: outcomes after five years. J Am Coll Cardiol 2005, 45:1532–1537.CrossRefPubMedGoogle Scholar
  32. 32.
    Tuzcu EM, Kapadia SR, Sachar R, et al.: Intravascular ultrasound evidence of angiographically silent progression in coronary atherosclerosis predicts long-term morbidity and mortality after cardiac transplantation. J Am Coll Cardiol 2005, 45:1538–1542.CrossRefPubMedGoogle Scholar
  33. 33.
    Gregory SA, Ferencik M, Achenbach S, et al.: Comparison of sixty-four-slice multidetector computed tomographic coronary angiography to coronary angiography with intravascular ultrasound for the detection of transplant vasculopathy. Am J Cardiol 2006, 98:877–884.CrossRefPubMedGoogle Scholar
  34. 34.
    Ferencik M, Gregory SA, Butler J, et al.: Analysis of cardiac dimensions, mass and function in heart transplant recipients using 64-slice multi-detector computed tomography. J Heart Lung Transplant 2007, 26:478–484.CrossRefPubMedGoogle Scholar
  35. 35.
    Raman SV, Shah M, McCarthy B, et al.: Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J 2006, 151:736–744.CrossRefPubMedGoogle Scholar
  36. 36.
    Plumhans C, Muhlenbruch G, Rapaee A, et al.: Assessment of global right ventricular function on 64-MDCT compared with MRI. AJR Am J Roentgenol 2008, 190:1358–1361.CrossRefPubMedGoogle Scholar
  37. 37.
    Mitsutake R, Miura S, Sako H, et al.: Usefulness of multidetector row computed tomography for the management of percutaneous transluminal septal myocardial ablation in patients with hypertrophic obstructive cardiomyopathy. Int J Cardiol 2008, 129:e61–e63.CrossRefPubMedGoogle Scholar
  38. 38.
    Tandri H, Bomma C, Calkins H, Bluemke DA: Magnetic resonance and computed tomography imaging of arrhythmogenic right ventricular dysplasia. J Magn Reson Imaging 2004, 19:848–858.CrossRefPubMedGoogle Scholar
  39. 39.
    Sparrow P, Merchant N, Provost Y, et al.: Cardiac MRI and CT features of inheritable and congenital conditions associated with sudden cardiac death. Eur Radiol 2009, 19:259–270.CrossRefPubMedGoogle Scholar
  40. 40.
    Ito H, Dajani KA: A case with noncompaction of the left ventricular myocardium detected by 64-slice multidetector computed tomography. J Thorac Imaging 2009, 24:38–40.CrossRefPubMedGoogle Scholar
  41. 41.
    Jenni R, Oechslin E, Schneider J, et al.: Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 2001, 86:666–671.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Deepa Mangalat
  • Andreas Kalogeropoulos
  • Vasiliki Georgiopoulou
  • Arthur Stillman
  • Javed Butler
    • 1
  1. 1.Cardiology DivisionEmory University HospitalAtlantaUSA

Personalised recommendations