Current Cardiovascular Imaging Reports

, Volume 2, Issue 1, pp 40–49

Imaging of vascular biology in the heart



The potential of molecular imaging in visualizing pathophysiologic processes underlying the development, progression, and regression of disease makes it a powerful tool for early detection, risk stratification, and tracking response to therapy. We have seen remarkable advances in molecular imaging of vascular diseases in recent years. To date, most studies have addressed the feasibility of molecular imaging in animal models of human disease, and translation into clinical practice is expected in the near future. Although there is a large body of literature, some groundbreaking, on cardiovascular molecular imaging going back to a decade ago, this review mainly focuses on recent advances in molecular imaging of vascular diseases of the heart.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Sadeghi MM: The pathobiology of the vessel wall: implications for imaging. J Nucl Cardiol 2006, 13:402–414.PubMedCrossRefGoogle Scholar
  2. 2.
    Libby P: Inflammation in atherosclerosis. Nature 2002, 420:868–874.PubMedCrossRefGoogle Scholar
  3. 3.
    Falk E: Pathogenesis of atherosclerosis. J Am Coll Cardiol 2006, 47(Suppl 8):C7–C12.PubMedCrossRefGoogle Scholar
  4. 4.
    Lusis AJ: Atherosclerosis. Nature 2000, 407:233–241.PubMedCrossRefGoogle Scholar
  5. 5.
    Briley-Saebo KC, Mulder WJ, Mani V, et al.: Magnetic resonance imaging of vulnerable atherosclerotic plaques: current imaging strategies and molecular imaging probes. J Magn Reson Imaging 2007, 26:460–479.PubMedCrossRefGoogle Scholar
  6. 6.
    Sadeghi MM, Schechner JS, Krassilnikova S, et al.: Vascular cell adhesion molecule-1-targeted detection of endothelial activation in human microvasculature. Transplant Proc 2004, 36:1585–1591.PubMedCrossRefGoogle Scholar
  7. 7.
    Nahrendorf M, Jaffer FA, Kelly KA, et al.: Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 2006, 114:1504–1511.PubMedCrossRefGoogle Scholar
  8. 8.
    Kelly KA, Nahrendorf M, Yu AM, et al.: In vivo phage display selection yields atherosclerotic plaque targeted peptides for imaging. Mol Imaging Biol 2006, 8:201–207.PubMedCrossRefGoogle Scholar
  9. 9.
    Kaufmann BA, Sanders JM, Davis C, et al.: Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 2007, 116:276–284.PubMedCrossRefGoogle Scholar
  10. 10.
    McAteer MA, Schneider JE, Ali ZA, et al.: Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol 2008, 28:77–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Li AC, Glass CK: The macrophage foam cell as a target for therapeutic intervention. Nat Med 2002, 8:1235–1242.PubMedCrossRefGoogle Scholar
  12. 12.
    Moore KJ, Freeman MW: Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol 2006, 26:1702–1711.PubMedCrossRefGoogle Scholar
  13. 13.
    Katsuda S, Boyd HC, Fligner C, et al.: Human atherosclerosis. III. Immunocytochemical analysis of the cell composition of lesions of young adults. Am J Pathol 1992, 140:907–914.PubMedGoogle Scholar
  14. 14.
    Dzau VJ, Braun-Dullaeus RC, Sedding DG: Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 2002, 8:1249–1256.PubMedCrossRefGoogle Scholar
  15. 15.
    Narula J, Petrov A, Bianchi C, et al.: Noninvasive localization of experimental atherosclerotic lesions with mouse/human chimeric Z2D3 F(ab’)2 specific for the proliferating smooth muscle cells of human atheroma. Imaging with conventional and negative charge-modified antibody fragments. Circulation 1995, 92:474–484.PubMedGoogle Scholar
  16. 16.
    Johnson LL, Schofield LM, Weber DK, et al.: Uptake of 111In-Z2D3 on SPECT imaging in a swine model of coronary stent restenosis correlated with cell proliferation. J Nucl Med 2004, 45:294–299.PubMedGoogle Scholar
  17. 17.
    Hansson GK: Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005, 352:1685–1695.PubMedCrossRefGoogle Scholar
  18. 18.
    Hartung D, Sarai M, Petrov A, et al.: Resolution of apoptosis in atherosclerotic plaque by dietary modification and statin therapy. J Nucl Med 2005, 46:2051–2056.PubMedCrossRefGoogle Scholar
  19. 19.
    Aikawa M, Libby P: The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc Pathol 2004, 13:125–138.PubMedCrossRefGoogle Scholar
  20. 20.
    Kolodgie FD, Narula J, Burke AP, et al.: Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 2000, 157:1259–1268.PubMedGoogle Scholar
  21. 21.
    Pasterkamp G, Fitzgerald PF, de Kleijn DP: Atherosclerotic expansive remodeled plaques: a wolf in sheep’s clothing. J Vasc Res 2002, 39:514–523.PubMedCrossRefGoogle Scholar
  22. 22.
    Virmani R, Kolodgie FD, Burke AP, et al.: Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 2005, 25:2054–2061.PubMedCrossRefGoogle Scholar
  23. 23.
    Saam T, Hatsukami TS, Takaya N, et al.: The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology 2007, 244:64–77.PubMedCrossRefGoogle Scholar
  24. 24.
    Kircher MF, Grimm J, Swirski FK, et al.: Noninvasive in vivo imaging of monocyte trafficking to atherosclerotic lesions. Circulation 2008, 117:388–395.PubMedCrossRefGoogle Scholar
  25. 25.
    Hyafil F, Laissy JP, Mazighi M, et al.: Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration. Arterioscler Thromb Vasc Biol 2006, 26:176–181.PubMedCrossRefGoogle Scholar
  26. 26.
    Hyafil F, Cornily JC, Feig JE, et al.: Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 2007, 13:636–641.PubMedCrossRefGoogle Scholar
  27. 27.
    Amirbekian V, Lipinski MJ, Briley-Saebo KC, et al.: Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A 2007, 104:961–966.PubMedCrossRefGoogle Scholar
  28. 28.
    Tawakol A, Migrino RQ, Bashian GG, et al.: In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006, 48:1818–1824.PubMedCrossRefGoogle Scholar
  29. 29.
    Rudd JH, Warburton EA, Fryer TD, et al.: Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002, 105:2708–2711.PubMedCrossRefGoogle Scholar
  30. 30.
    Rudd JH, Myers KS, Bansilal S, et al.: (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007, 50:892–896.PubMedCrossRefGoogle Scholar
  31. 31.
    Laurberg JM, Olsen AK, Hansen SB, et al.: Imaging of vulnerable atherosclerotic plaques with FDG-microPET: no FDG accumulation. Atherosclerosis 2007, 192:275–282.PubMedCrossRefGoogle Scholar
  32. 32.
    Kolodgie FD, Petrov A, Virmani R, et al.: Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 2003, 108:3134–3139.PubMedCrossRefGoogle Scholar
  33. 33.
    Kietselaer BL, Reutelingsperger CP, Heidendal GA, et al.: Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 2004, 350:1472–1473.PubMedCrossRefGoogle Scholar
  34. 34.
    Sarai M, Hartung D, Petrov A, et al.: Broad and specific caspase inhibitor-induced acute repression of apoptosis in atherosclerotic lesions evaluated by radiolabeled annexin A5 imaging. J Am Coll Cardiol 2007, 50:2305–2312.PubMedCrossRefGoogle Scholar
  35. 35.
    Elliott JI, Surprenant A, Marelli-Berg FM, et al.: Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes. Nat Cell Biol 2005, 7:808–816.PubMedCrossRefGoogle Scholar
  36. 36.
    Garcia-Touchard A, Henry TD, Sangiorgi G, et al.: Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol 2005, 25:1119–1127.PubMedCrossRefGoogle Scholar
  37. 37.
    Deguchi JO, Aikawa M, Tung CH, et al.: Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 2006, 114:55–62.PubMedCrossRefGoogle Scholar
  38. 38.
    Lancelot E, Amirbekian V, Brigger I, et al.: Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol 2008, 28:425–432.PubMedCrossRefGoogle Scholar
  39. 39.
    Schafers M, Riemann B, Kopka K, et al.: Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 2004, 109:2554–2559.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang J, Nie L, Razavian M, et al.: Molecular imaging of activated matrix metalloproteinase in vascular remodeling. Circulation 2008, 118:1953–1960.PubMedCrossRefGoogle Scholar
  41. 41.
    Lutgens SP, Cleutjens KB, Daemen MJ, Heeneman S: Cathepsin cysteine proteases in cardiovascular disease. FASEB J 2007, 21:3029–3041.PubMedCrossRefGoogle Scholar
  42. 42.
    Jaffer FA, Kim DE, Quinti L, et al.: Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 2007, 115:2292–2298.PubMedCrossRefGoogle Scholar
  43. 43.
    Chen J, Tung CH, Mahmood U, et al.: In vivo imaging of proteolytic activity in atherosclerosis. Circulation 2002, 105:2766–2771.PubMedCrossRefGoogle Scholar
  44. 44.
    Kolodgie FD, Gold HK, Burke AP, et al.: Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 2003, 349:2316–2325.PubMedCrossRefGoogle Scholar
  45. 45.
    Moreno PR, Purushothaman KR, Fuster V, et al.: Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation 2004, 110:2032–2038.PubMedCrossRefGoogle Scholar
  46. 46.
    Winter PM, Neubauer AM, Caruthers SD, et al.: Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 2006, 26:2103–2109.PubMedCrossRefGoogle Scholar
  47. 47.
    Winter PM, Morawski AM, Caruthers SD, et al.: Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 2003, 108:2270–2274.PubMedCrossRefGoogle Scholar
  48. 48.
    Matter CM, Schuler PK, Alessi P, et al.: Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin. Circ Res 2004, 95:1225–1233.PubMedCrossRefGoogle Scholar
  49. 49.
    Sadeghi MM, Krassilnikova S, Zhang J, et al.: Detection of injury-induced vascular remodeling by targeting activated alphavbeta3 integrin in vivo. Circulation 2004, 110:84–90.PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang J, Krassilnikova S, Gharaei AA, et al.: Alphavbeta3-targeted detection of arteriopathy in transplanted human coronary arteries: an autoradiographic study. FASEB J 2005, 19:1857–1859.PubMedGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.VAMCWest HavenUSA

Personalised recommendations