The Disease Burden of Dietary Exposure to Inorganic Arsenic in Denmark, 2018

  • Lea S. JakobsenEmail author
  • Freja A. Fabricius
  • Janna Nissen
  • Tue Christensen
  • Rikke Andersen
  • Morten Poulsen
  • Sara M. Pires
Original Paper


Arsenic is a naturally occurring metalloid in soil, air, water and food in organic and inorganic forms. Several epidemiological studies have shown that inorganic arsenic (i-As) is carcinogenic to humans. Previous studies have raised concern about dietary i-As exposure from various sources, including brown rice. We estimated the burden of disease in terms of disability-adjusted life years (DALY) of lung, bladder and skin cancer caused by dietary exposure to i-As in Denmark. Moreover, we investigated the impact of different rice-consumption scenarios of white and brown rice. We combined exposure assessment with dose response relationships of i-As exposure and lifetime risk of each cancer type to estimate the annual incidence due to i-As exposure. Associated DALY was calculated based on national health statistics. We estimated 0.57 extra cancer cases and 4.5 DALY [95% UI 4.2–4.8] in the Danish population in 2018. Even though rice was found not to be the main contributor of i-As, substitution of white and parboiled rice by brown rice resulted in a 32.7% increase in DALY compared to the current consumption of rice. The estimated number of cancer cases due to dietary i-As equals 0.006% of the annual incidence of the three cancer types in Denmark. Our estimates exclude exposure to i-As from drinking water and other beverages, which should be accounted for in future estimates. Our study highlights the need for deriving national-specific estimates of food borne disease burden to allow for comparison and prioritization.


Inorganic arsenic Dietary exposure Cancer Disease burden DALY 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12403_2019_334_MOESM1_ESM.pdf (8 kb)
Electronic supplementary material 1 (PDF 8 kb)
12403_2019_334_MOESM2_ESM.pdf (113 kb)
Electronic supplementary material 2 (PDF 113 kb)
12403_2019_334_MOESM3_ESM.pdf (10 kb)
Electronic supplementary material 3 (PDF 10 kb)
12403_2019_334_MOESM4_ESM.pdf (81 kb)
Electronic supplementary material 4 (PDF 81 kb)
12403_2019_334_MOESM5_ESM.pdf (106 kb)
Electronic supplementary material 5 (PDF 106 kb)


  1. Ankarberg EH, Foghelberg P, Gustafsson K, Nordenfors H, Bjerselius R (2015) Oorganisk arsenik i ris och risprodukter på den svenska marknaden. Technical report, National Food Agency.
  2. Baastrup R, Sørensen M, Balstrøm T, Frederiksen K, Larsen CL, Tjønneland A, Overvad K, Raaschou-Nielsen O (2008) Arsenic in drinking-water and risk for cancer in Denmark. Environ Health Perspect 116(2):231–237. CrossRefGoogle Scholar
  3. Bellinger DC, Devleesschauwer B, O’Leary K, Gibb HJ (2018) Global burden of intellectual disability resulting from prenatal exposure to methylmercury, 2015. Environ Res 170:416–421. CrossRefGoogle Scholar
  4. Carrington C, Devleesschauwer B, Gibb HJ, Bolger PM (2019) Global burden of intellectual disability resulting from dietary exposure to lead, 2015. Environ Res 172:420–429. CrossRefGoogle Scholar
  5. Chen CJ, Chuang Y-C, Lin M, Wu H-Y (1985) Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. Cancer Res 45:5895–5899Google Scholar
  6. Chen CL, Chiou HY, Hsu LI, Hsueh YM, Wu MM, Chen CJ (2010a) Ingested arsenic, characteristics of well water consumption and risk of different histological types of lung cancer in northeastern Taiwan. Environ Res 110(5):455–462. CrossRefGoogle Scholar
  7. Chen LC, Chiou HY, Hsu LI, Hsueh YM, Wu MM, Wang YH, Chen CJ (2010b) Arsenic in drinking water and risk of urinary tract cancer: a follow-up study from Northeastern Taiwan. Cancer Epidemiol Biomark Prevent 19(1):101–110. CrossRefGoogle Scholar
  8. Chiou HY, Chiou ST, Hsu YH, Chou YL, Tseng CH, Wei ML, Chen CJ (2001) Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8,102 residents in an arseniasis-endemic area in Northeastern Taiwan. Am J Epidemiol 153(5):411–418. CrossRefGoogle Scholar
  9. Devleesschauwer B, Havelaar AH, Maertens C (2014) Calculating disability-adjusted life years to quantify burden of disease. Int J Pub Health 59:565–569. CrossRefGoogle Scholar
  10. EFSA (2009) Scientific opinion on arsenic in food. EFSA J 7(10):1351. CrossRefGoogle Scholar
  11. EFSA (2014) Dietary exposure to inorganic arsenic in the European population. EFSA J 12(3):3597. CrossRefGoogle Scholar
  12. Ersbøll AK, Monrad M, Sørensen M, Baastrup R, Hansen B, Bach FW, Tjønneland A, Overvad K, Raaschou-Nielsen O (2018) Low-level exposure to arsenic in drinking water and incidence rate of stroke: a cohort study in Denmark. Environ Int 120:72–80. CrossRefGoogle Scholar
  13. FDA (2017) FDA-iRisk. URL
  14. Ferreccio C, González C, Milosavjlevic V, Marshall G, Sancha AM, Smith AH (2000) Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 11(6):673–679. CrossRefGoogle Scholar
  15. Gibb H, Devleesschauwer B, Bolger PM, Wu F, Ezendam J, Cliff J, Zeilmaker M, Verger P, Pitt J, Baines J, Adegoke G, Afshari R, Liu Y, Bokkers B, Van Loveren H, Mengelers M, Brandon E, Havelaar AH, Bellinger D (2015) World Health Organization estimates of the global and regional disease burden of four foodborne chemical toxins, 2010: a data synthesis. F1000Research 1:1393. CrossRefGoogle Scholar
  16. Gibb H, Barchowsky A, Bellinger D, Bolger PM, Carrington C, Havelaar AH, Oberoi S, Zang Y, O’Leary K, Devleesschauwer B (2018) Estimates of the 2015 global and regional disease burden from four foodborne metals - arsenic, cadmium, lead and methylmercury. Environ Res 174:188–194. CrossRefGoogle Scholar
  17. Gray PJ, Conklin SD, Todorov TI, Kasko SM (2015) Cooking rice in excess water reduces both arsenic and enriched vitamins in the cooked grain. Food Addit Contam Part A 33(1):78–85. CrossRefGoogle Scholar
  18. Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, Praet N, Bellinger DC (2015) World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med 12(12):e1001923. CrossRefGoogle Scholar
  19. Hmwe Hmwe K, Degu A, Kalkidan Hassen A, Abay Solomon M (2018) Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990 to 2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392(10159):1859–1922. CrossRefGoogle Scholar
  20. Hughes MF, Beck BD, Yu C, Ari SL, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123(2):305–332. CrossRefGoogle Scholar
  21. IARC (1980) Some metals and metallic compounds: evaluation of the carcinogenic risk of chemicals to humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 23:1–440.
  22. IARC (2012) Arsenic, metals, fibres and dusts: arsenic compounds. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 100C.
  23. IRIS (1995) Arsenic, inorganic (CASRN 7440-38-2). Technical report, US Environmental Protection Agency.
  24. Jakobsen LS, Granby K, Knudsen VK, Nauta M, Pires SM, Poulsen M (2016) Burden of disease of dietary exposure to acrylamide in Denmark. Food Chem Toxicol 90:151–159. CrossRefGoogle Scholar
  25. JECFA (2011) Safety evaluation of certain contaminants in food. Prepared by the sixty-fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). FAO Food Nutr Pap 82:1–778Google Scholar
  26. Lake RJ, Devleesschauwer B, Nasinyama G, Havelaar AH, Kuchenmüller T, Haagsma JA, Jensen HH, Jessani N, De Noordhout CM, Angulo FJ, Ehiri JE, Molla L, Agaba F, Aungkulanon S, Kumagai Y, Speybroeck N (2015) National studies as a component of the World Health Organization initiative to estimate the global and regional burden of foodborne disease. PLoS ONE 10(12):1–10. CrossRefGoogle Scholar
  27. Meharg AA, Lombi E, Williams PN, Scheckel KG, Feldmann J, Raab A, Zhu Y (2008) Speciation and localization of arsenic in white and brown rice grains. Environ Sci Technol 42(4):1051–1057. CrossRefGoogle Scholar
  28. Monrad M, Ersbøll AK, Sørensen M, Baastrup R, Hansen B, Gammelmark A, Tjønneland A, Overvad Kim, Raaschou-Nielsen O (2017) Low-level arsenic in drinking water and risk of incident myocardial infarction: a cohort study. Environ Res 154:318–324. CrossRefGoogle Scholar
  29. Moon KA, Oberoi S, Barchowsky A, Chen Y, Guallar E, Nachman KE, Rahman M, Sohel N, D’Ippoliti D, Wade TJ, James KA, Farzan SF, Karagas MR, Ahsan H, Navas-Acien A (2017) A dose-response meta-analysis of chronic arsenic exposure and incident cardiovascular disease. Int J Epidemiol 46(6):1924–1939. CrossRefGoogle Scholar
  30. Morales KH, Ryan L, Kuo T-L, Wu M-M, Chen C-J (2000) Risk of internal cancers from arsenic in drinking water. Technical report. CrossRefGoogle Scholar
  31. Murray CJL, Lopez AD (1996) The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020. Harvard School of Public Health, Cambridge, MA, USA, Summary. ISBN 0-965-54660-8.
  32. Navas-Acien A, Sanchez TR, Mann K, Jones MR (2019) Arsenic exposure and cardiovascular disease: evidence needed to inform the dose-response at low levels. Curr Epidemiol Rep 6(2):81–92. CrossRefGoogle Scholar
  33. Oberoi S, Barchowsky A, Wu F (2014) The global burden of disease for skin, lung, and bladder cancer caused by arsenic in food. Cancer Epidemiol Biomark Prevent 23(7):1187–1194. CrossRefGoogle Scholar
  34. Oberoi S, Devleesschauwer B, Gibb HJ, Barchowsky A (2019) Global burden of cancer and coronary heart disease resulting from dietary exposure to arsenic, 2015. Environ Res 171:185–192. CrossRefGoogle Scholar
  35. Pedersen AN, Christensen T, Matthiessen J, Knudsen VK, Rosenlund-Soerensen M, Biltoft-Jensen A, Hinsch H-J, Ygil K H, Kørup K, Saxholt E, Trolle E, Søndergaard AB, Fagt S (2015) Danskernes Kostvaner 2011-2013. Hovedresultater 2015. Technical report, National Food Institute, Technical University of Denmark, Soeborg.
  36. Petersen A, Fromberg A, Andersen JH, Sloth JJ, Granby K, Duedahl-Olesen L, Rasmussen PH, Fagt S, Cederberg TL, Christensen T (2015) Chemical contaminants, food monitoring 2004-2011. Technical report, National Food Institute, Technical University of Denmark, Søborg.
  37. R Core Team (2015) R: A language and environment for statistical computing.. URL
  38. Rommel A, Von Der Lippe E, Plaß D, Wengler A, Anton A, Schmidt C, Schüssel K, Brückner G, Schröder H, Porst M, Leddin J, Tobollik M, Baumert J, Scheidt-Nave C, Ziese T (2018) BURDEN 2020—Burden of disease in Germany at the national and regional level. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 61:1159–1166. CrossRefGoogle Scholar
  39. Torres ES, Leal M, Velez D, Montoro R (2008) Total and inorganic arsenic concentrations in rice sold in Spain, effect of cooking, and risk assessments. Environ Sci Technol 42(10):3867–3872. CrossRefGoogle Scholar
  40. Tseng WP (1977) Effects and dose response relation-ships of skin cancer and blackfoot disease with arsenic. Technical report.
  41. Tseng WP, Chu HM, How SW, Fong SJM, Lln CS, Yeh S (1968) Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst 40(3):453–463. CrossRefGoogle Scholar
  42. US FDA (2016) Arsenic in rice and rice products risk assessment report. Technical report.
  43. WHO (2018) WHO methods and data sources for global burden of disease estimates 2000-2016. Global Health Estimates Technical Paper WHO, 4(June):81.
  44. Zang Y, Devleesschauwer B, Michael BP, Emily G, Gibb HJ (2019) Global burden of late-stage chronic kidney disease resulting from dietary exposure to cadmium 2015. Environ Res 169:72–78. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Division for Diet, Diease Prevention and ToxicologyTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Division of Risk Assessment and NutritionKgs. LyngbyDenmark

Personalised recommendations