Advertisement

Evidence of association between SNAP25 gene and attention deficit hyperactivity disorder in a Latin American sample

  • Jubby M. Gálvez
  • Diego A. Forero
  • Dora J. Fonseca
  • Heidi E. Mateus
  • Claudia Talero-Gutierrez
  • Alberto Velez-van-MeerbekeEmail author
Original Article

Abstract

Attention deficit hyperactivity disorder (ADHD) is one of the most highly heritable behavioral disorders in childhood, with heritability estimates between 60 and 90 %. Family, twin and adoption studies have indicated a strong genetic component in the susceptibility to ADHD. The synaptosomal-associated protein of molecular weight 25 kDa (SNAP25) is a plasma membrane protein known to be involved in synaptic and neural plasticity. Animal model studies have shown that SNAP25 gene is responsible for hyperkinetic behavior in the coloboma mouse. In recent studies, several authors reported an association between SNAP25 and ADHD. In this study, we used a case–control approach to analyze the possible association of two polymorphisms of SNAP25 for possible association with ADHD in a sample of 73 cases and 152 controls in a Colombian children population. Polymorphisms are located in 3′ untranslated region of SNAP25, positions T1065G and T1069C. We found a significant association with the GT haplotype (rs3746554|rs1051312) of SNAP25 (p = 0.001). Evidence of association was also found for the G/G genotype of rs3746554 (p = 0.002) and C/C genotype of rs1051312 (p = 0.009). This is the first study in a Latin American population. Similar to other studies, we found evidence of the association of SNAP25 and ADHD.

Keywords

ADHD Genotype Haplotype Polymorphism rs3746554 rs1051312 SNAP25 3′UTR 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bark I, Wilson M (1994) Regulated vesicular fusion in neurons: snapping together the details. Proc Natl Acad Sci USA 91:4621–4624PubMedCrossRefGoogle Scholar
  2. Barr CL, Feng Y, Wigg K et al (2000) Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 5:405–409PubMedCrossRefGoogle Scholar
  3. Biederman J, Faraone SV (2005) Attention-deficit hyperactivity disorder. Lancet 366:237–248PubMedCrossRefGoogle Scholar
  4. Chang S, Zhang W, Gao L, Wang J (2012) Prioritization of candidate genes for attention deficit hyperactivity disorder by computational analysis of multiple data sources. Protein Cell 3:526–534PubMedCrossRefGoogle Scholar
  5. Coolidge F, Thede L, Young S (2000) Heritability and the comorbidity of attention deficit hyperactivity disorder with behavioral disorders and executive function deficits: a preliminary investigation. Dev Neuropsychol 17:273–287PubMedCrossRefGoogle Scholar
  6. Faraone SV, Sergeant J, Gillberg C, Biederman J (2003) The worldwide prevalence of ADHD: is it an American condition? World Psychiatry Off J World Psychiatr Assoc WPA 2:104–113Google Scholar
  7. Faraone SV, Perlis RH, Doyle AE et al (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323PubMedCrossRefGoogle Scholar
  8. Forero DA, Arboleda GH, Vasquez R, Arboleda H (2009) Candidate genes involved in neural plasticity and the risk for attention-deficit hyperactivity disorder: a meta-analysis of 8 common variants. J psychiatry Neurosci JPN 34:361–366Google Scholar
  9. Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126:51–90PubMedCrossRefGoogle Scholar
  10. Grünblatt E, Geissler J, Jacob CP et al (2012) Pilot study: potential transcription markers for adult attention-deficit hyperactivity disorder in whole blood. Atten Defic Hyperact Disord 4:77–84PubMedCrossRefGoogle Scholar
  11. Hawi Z, Matthews N, Wagner J et al (2013) DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex. PLoS ONE 8:e60274PubMedCentralPubMedCrossRefGoogle Scholar
  12. Hess EJ, Collins KA, Wilson MC (1996) Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. J Neurosci 16:3104–3111PubMedGoogle Scholar
  13. Kovacs-Nagy R, Sarkozy P, Hu J et al (2011) Haplotyping of putative microRNA-binding sites in the SNAP-25 gene. Electrophoresis 32:2013–2020PubMedCrossRefGoogle Scholar
  14. Kustanovich V, Merriman B, McGough J et al (2003) Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 8:309–315PubMedCrossRefGoogle Scholar
  15. Pazvantoğlu O, Güneş S, Karabekiroğlu K et al (2013) The relationship between the presence of ADHD and certain candidate gene polymorphisms in a Turkish sample. Gene 528:320–327PubMedCrossRefGoogle Scholar
  16. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedCentralPubMedCrossRefGoogle Scholar
  17. Renner TJ, Walitza S, Dempfle A et al (2008) Allelic variants of SNAP25 in a family-based sample of ADHD. J Neural Transm 115:317–321PubMedCrossRefGoogle Scholar
  18. Sarkar K, Bhaduri N, Ghosh P et al (2012) Role of SNAP25 explored in eastern Indian attention deficit hyperactivity disorder probands. Neurochem Res 37:349–357PubMedCrossRefGoogle Scholar
  19. Solé X, Guinó E, Valls J et al (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22:1928–1929PubMedCrossRefGoogle Scholar
  20. Steffensen SC, Wilson MC, Henriksen SJ (1996) Coloboma contiguous gene deletion encompassing Snap alters hippocampal plasticity. Synapse 22:281–289PubMedCrossRefGoogle Scholar
  21. Südhof TC (1995) Synaptic core complex of synaptobrevin, syntaxin, and SNAP25 forms high affinity alpha-SNAP binding site. J Biol Chem 270:2213–2217PubMedCrossRefGoogle Scholar
  22. Svenaeus F (2013) Diagnosing mental disorders and saving the normal: American Psychiatric Association, 2013. Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing, Washington, DC, Med Health Care Philos p 991Google Scholar
  23. Vélez-van-Meerbeke A, Zamora IP, Guzmán G et al (2012) Evaluating executive function in schoolchildren with symptoms of attention deficit hyperactivity disorder. Neurologia 28:348–355PubMedCrossRefGoogle Scholar
  24. Zhang H, Zhu S, Zhu Y et al (2011) An association study between SNAP-25 gene and attention-deficit hyperactivity disorder. Eur J Paediatr Neurol 15:48–52PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Jubby M. Gálvez
    • 1
  • Diego A. Forero
    • 2
  • Dora J. Fonseca
    • 3
  • Heidi E. Mateus
    • 3
  • Claudia Talero-Gutierrez
    • 1
  • Alberto Velez-van-Meerbeke
    • 1
  1. 1.Neuroscience Department and Research Group (NeURos), School of Medicine and Health SciencesUniversidad del RosarioBogotáColombia
  2. 2.School of MedicineUniversidad Antonio NariñoBogotáColombia
  3. 3.Genetic Department, School of Medicine and Health SciencesUniversidad del RosarioBogotáColombia

Personalised recommendations